Contents

1 A Simplex Nelder Mead Genetic Algorithm for Minimizing Molecular Potential Energy Function 1
 Ahmed Fouad Ali and Aboul-Ella Hassanien
 1.1 Introduction .. 1
 1.2 Discuss of the Problem 3
 1.2.1 Overview of Genetic Algorithm 5
 1.3 The Proposed GNMA ... 6
 1.3.1 The Initial Population and Population Partitioning Process 6
 1.3.2 Crossover and Mutation 7
 1.3.3 Survival Selection 7
 1.3.4 Applying Nelder-Mead Algorithm as a Final Exploitation Process 8
 1.3.5 The Nelder-Mead Algorithm 8
 1.3.6 The Algorithm of GNMA 10
 1.4 Numerical Experiments 11
 1.4.1 Parameter Setting 11
 1.4.2 Performance Analysis 13
 1.4.3 GNMA and Other Benchmark Methods 17
 1.5 Conclusions .. 20
References ... 20

2 A Survey of Metaheuristics Methods for Bioinformatics Applications ... 23
 Ahmed Fouad Ali and Aboul-Ella Hassanien
 2.1 Introduction ... 23
 2.2 Single-Solution Based Metaheuristics Methods 25
 2.2.1 Tabu Search 25
 2.2.2 Simulated Annealing 26
 2.2.3 Variable Neighborhood Search 28
2.3 Population-Based Meta-heuristics Techniques
 2.3.1 Evolutionary Algorithms
 2.3.2 Swarm Intelligence
2.4 Metaheuristics as a Tool for Bioinformatics Applications
 2.4.1 Application 1: Selecting Genes from Gene Expression Data for Cancer Classification
 2.4.2 Application 2: Molecular 3D Structure Prediction
 2.4.3 Application 3: Multiple Sequence Alignment
2.5 Conclusion
References

3 DNA Based Steganography: Survey and Analysis for Parameters Optimization
Ghada Hamed, Mohammed Marey, Safaa El-Sayed and Fahmy Tolba
3.1 Introduction
3.2 Background
3.3 DNA Based Steganography Techniques
 3.3.1 First Approach: Insertion Based Algorithms
 3.3.2 Second Approach: Substitution Based Algorithms
 3.3.3 Third Approach: Complementary Rules Based Algorithms with Zero Payload and Modification
 3.3.4 Fourth Approach: Combined Approaches Based Algorithms
3.4 Issues, Controversies, Problems
 3.4.1 Insertion Based Algorithms
 3.4.2 Substitution Based Algorithms
 3.4.3 Complementary Rules Based Algorithms with Zero Payload and Modification
 3.4.4 Combined Approaches
3.5 Security Analysis: Cracking Probability Parameter
3.6 Comparative Analysis: Process-Based Parameters
 3.6.1 Cryptography Process Parameters
 3.6.2 Steganography Process Parameters
3.7 Solutions and Recommendations
3.8 Conclusion
References

4 Dental Image Registration Using Particle Swarm Optimized for Thin Plate Splines from Semi-automatic Correspondences
Sara A. Ahmed
4.1 Introduction
4.2 Image Registration
 4.2.1 Transformation
4.2.2 Similarity Metric ... 96
4.2.3 Search Strategies 96

4.3 Determination of Geometric Deformations
on Cephalogram Registration 97
 4.3.1 Cephalometric Analysis 97
 4.3.2 Geometric Morphometrics 98

4.4 Preliminaries .. 100
 4.4.1 Mutual Information 100
 4.4.2 Particle Swarm Optimization 101

4.5 Materials and Proposed Method 103
 4.5.1 Materials ... 103
 4.5.2 OMI_TPS Method 104

4.6 Experimental Results 106
 4.6.1 Multitemporal Registration 106
 4.6.2 Multimodal Registration 111

4.7 Conclusion ... 113

References .. 113

5 A Modified Particle Swarm Optimization Algorithm
for Solving Capacitated Maximal Covering
Location Problem in Healthcare Systems 117
Sahar K. Elkady and Hisham M. Abdelsalam

5.1 Introduction .. 117
5.2 Mathematical Model 118
5.3 Implementation .. 120
 5.3.1 Particle Swarm Optimization (PSO) 120
 5.3.2 Proposed Solution Algorithm 121
5.4 Numerical Analysis 125
 5.4.1 Benchmark Problem 125
 5.4.2 Computational Results 127
5.5 Conclusion and Discussion 132

References .. 132

6 Optimization Methods for Medical Image Super
Resolution Reconstruction 135
Marwa Moustafa, Hala M. Ebied, Ashraf Helmy,
Taymoor M. Nazamy and Mohamed F. Tolba

6.1 Introduction .. 136
6.2 Image Observation Model 137
6.3 Shift Estimation .. 139
 6.3.1 Frequency Domain Approaches 139
 6.3.2 Spatial Domain Approaches 140
6.4 Reconstruction Algorithms ... 140
 6.4.1 Frequency Domain Based Algorithms 140
 6.4.2 Spatial Domain Based Algorithms 142
6.5 Methodology .. 145
6.6 Experimental and Results ... 147
6.7 Conclusion ... 149
References ... 153

7 PCA-PNN and PCA-SVM Based CAD Systems for Breast Density Classification ... 159
Kriti, Jitendra Virmani, Nilanjan Dey and Vinod Kumar
7.1 Introduction .. 160
7.2 Methodology ... 165
 7.2.1 Dataset Description .. 165
 7.2.2 Regions of Interest (ROIs) Selection 166
 7.2.3 Proposed CAD System Design 167
7.3 Result ... 173
 7.3.1 Experiment 1: Classification Results with Laws’ Masks of Length 5, 7 and 9 with PNN Classifier 173
 7.3.2 Experiment 2: Classification Results with Laws’ Masks of Length 5, 7 and 9 with SVM Classifier 174
 7.3.3 Experiment 3: Classification Results with Laws’ Masks of Length 5, 7 and 9 with PCA-PNN Classifier ... 175
 7.3.4 Experiment 4: Classification Results with Laws’ Masks of Length 5, 7 and 9 with PCA-SVM Classifier ... 176
7.4 Conclusion ... 176
References ... 177

8 Retinal Blood Vessels Segmentation Based on Bio-Inspired Algorithm ... 181
Ahmed Hamza Asad and Aboul-Ella Hassaanien
8.1 Introduction .. 181
8.2 Retinal Image ... 183
 8.2.1 Retina Imaging ... 183
 8.2.2 Properties of Blood Vessels in Retinal Image 183
 8.2.3 Retinal Images Databases ... 184
8.3 Survey on Retinal Blood Vessels Segmentation Approaches ... 185
8.4 Bio-Inspired Computing .. 188
 8.4.1 Ant Colony Optimization ... 190
8.5 Ant Colony System Based Approach for Retinal Blood Vessels Segmentation
8.5.1 Integrated Features Based on Gray-Level and Hu Moment-Invariants with Ant Colony System for Retinal Blood Vessels Segmentation
8.5.2 Improved Ant Colony System Based Segmentation Approach of Retinal Blood Vessels
8.6 Experimental Results and Analysis
8.6.1 ACS Parameters Values
8.6.2 Performance Indices
8.6.3 Performance of ACS-based Segmentation Approach
8.6.4 Performance of Improved ACS-based Segmentation Approach
8.7 Conclusions and Future Work
References

9 Systematic Analysis of Applied Data Mining Based Optimization Algorithms in Clinical Attribute Extraction and Classification for Diagnosis of Cardiac Patients
Noreen Kausar, Sellapan Palaniappan, Brahim Belhaouari Samir, Azween Abdullah and Nilanjan Dey
9.1 Introduction
9.1.1 Data Mining Applications in Health Care
9.1.2 Significance of Data Mining in Designing Clinical Diagnostic System
9.1.3 Clinical Prerequisite for Diagnostic System of Cardiac Disease
9.2 Review of Data Mining Techniques Applied for Cardiac Disease Detection
9.2.1 Decision Support Systems
9.2.2 Supervised SVM Classification Approaches
9.2.3 Neural Network Classification Approaches
9.2.4 Probabilistic Classification Approaches
9.3 Performance Analysis of Applied Classification Approaches for Cardiac Disease Detection
9.3.1 Extensive Comparison for Various Applied Data Mining Approaches
9.3.2 Limitations of Applied Data Mining Approaches
9.4 Recommendations for Optimized Data Mining Mechanism in Health Care
9.4.1 Hybrid System Formation
9.4.2 Suitable Feature Processing Technique
12.3 Proposed Algorithm

12.3.1 Individual Encoding

12.3.2 Population Initialization

12.3.3 Fitness Computation

12.3.4 Cross Over

12.3.5 Mutation

12.3.6 Selection

12.3.7 Termination Criterion

12.4 Experimental Results

12.5 Conclusion

References

13 Optimized Tumor Breast Cancer Classification Using
Combining Random Subspace and Static Classifiers

Selection Paradigms

Soraya Cheriguene, Nabiha Azizi, Nawel Zemmam,
Nilanjan Dey, Hayet Djellali and Nadir Farah

13.1 Introduction

13.2 Related Work

13.3 Ensemble Classifier Selection

13.3.1 Bagging

13.3.2 Boosting

13.3.3 Random Subspace

13.3.4 Static Classifier Selection (SCS)

13.4 Proposed RSS-SCS Approach for Breast Cancer CAD

13.4.1 Features Extraction

13.4.2 Features Selection

13.4.3 Learning and Classification

13.5 Experiments

13.5.1 Presentation of DDSM Database

13.5.2 Classification Performance

13.6 Conclusion

References
Applications of Intelligent Optimization in Biology and Medicine
Current Trends and Open Problems
Hassanien, A.-E.; Grosan, C.; Tolba, M.F. (Eds.)
2016, XIII, 307 p. 100 illus., 47 illus. in color., Hardcover
ISBN: 978-3-319-21211-1