Contents

Part I Dispersion Relations in HD Quantum Wells, Nano Wires and Dots in the Presence of Magnetic Field

1 The DRs in Low Dimensional HD Systems in the Presence of Magnetic Field ... 3
 1.1 Introduction ... 3
 1.2 Theoretical Background ... 6
 1.2.1 The DR in Quantum Wells of HD III–V, Ternary and Quaternary Materials in the Presence of Magnetic Field ... 6
 1.2.2 The DR in Nano Wires of HD III–V Semiconductors in the Presence of Magnetic Field 19
 1.2.3 The DR in Quantum Dot of HD III–V Semiconductors in the Presence of Magnetic Field 25
 1.2.4 The DR in Quantum Wells of HD III–V Semiconductors in the Presence of Cross Fields 31
 1.2.5 The DR in Nano-Wires of HD III–V Semiconductors in the Presence of Cross Fields 34
 1.2.6 The DR in Quantum Dot of HD III–V Semiconductors in the Presence of Cross Fields 35
 1.2.7 The DR in Quantum Wells of HD IV–VI Semiconductors in the Presence of Magnetic Field .. 37
 1.2.8 The DR in Nano Wires of HD IV–VI Semiconductors in the Presence of Magnetic Field 51
 1.2.9 The DR in Quantum Dot of HD IV–VI Semiconductors in the Presence of Magnetic Field 60
Part II Dispersion Relations in HD Quantum Confined Non-parabolic Materials

2 The DRs in Ultrathin Films (UFs) of Heavily Doped (HD) Non-parabolic Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>2.2</td>
<td>Theoretical Background</td>
<td>119</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The DR in Ultrathin Films (UFs) of HD Nonlinear Optical Materials</td>
<td>119</td>
</tr>
<tr>
<td>2.2.2</td>
<td>The DR in Ultrathin Films (UFs) of HD III–V Materials</td>
<td>130</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The DR in Ultrathin Films (UFs) of HD II–VI Materials</td>
<td>141</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The DR in Ultrathin Films (UFs) of HD IV–VI Materials</td>
<td>143</td>
</tr>
<tr>
<td>2.2.5</td>
<td>The DR in Ultrathin Films (UFs) of HD Stressed Kane Type Materials</td>
<td>157</td>
</tr>
<tr>
<td>2.2.6</td>
<td>The DR in Ultrathin Films (UFs) of HD Te</td>
<td>162</td>
</tr>
<tr>
<td>2.2.7</td>
<td>The DR in Ultrathin Films (UFs) of HD Gallium Phospide</td>
<td>165</td>
</tr>
<tr>
<td>2.2.8</td>
<td>The DR in Ultrathin Films (UFs) of HD Platinum Antimonide</td>
<td>169</td>
</tr>
<tr>
<td>2.2.9</td>
<td>The DR in Ultrathin Films (UFs) of HD Bismuth Telluride</td>
<td>172</td>
</tr>
<tr>
<td>2.2.10</td>
<td>The DR in Ultrathin Films (UFs) of HD Germanium</td>
<td>174</td>
</tr>
<tr>
<td>2.2.11</td>
<td>The DR in Ultrathin Films (UFs) of HD Gallium Antimonide</td>
<td>181</td>
</tr>
<tr>
<td>2.2.12</td>
<td>The DR in Ultrathin Films (UFs) of HD II–V Materials</td>
<td>183</td>
</tr>
</tbody>
</table>
2.2.13 The DR in Ultrathin Films (UFs) of HD Lead Germanium Telluride ... 184
2.2.14 The DR in Ultrathin Films (UFs) of HD Zinc and Cadmium Diphosphides 185

2.3 Results and Discussion ... 187
2.4 Open Research Problems ... 203

References .. 205

3 The DRs in Quantum Wires (QWs) of Heavily Doped (HD) Non-parabolic Materials 209

3.1 Introduction .. 209
3.2 Theoretical Background ... 210

3.2.1 The DR in Quantum Wires (QWs) of HD Nonlinear Optical Materials ... 210
3.2.2 The DR in Quantum Wires (QWs) of HD III–V Materials ... 211
3.2.3 The DR in Quantum Wires (QWs) of HD II–VI Materials ... 217
3.2.4 The DR in Quantum Wires (QWs) of HD IV–VI Materials ... 218
3.2.5 The DR in QWs of HD Stressed Kane Type Materials ... 222
3.2.6 The DR in Quantum Wires (QWs) of HD Te .. 223
3.2.7 The DR in Quantum Wires (QWs) of HD Gallium Phosphide .. 225
3.2.8 The DR in Quantum Wires (QWs) of HD Platinum Antimonide ... 226
3.2.9 The DR in Quantum Wires (QWs) of HD Bismuth Telluride .. 227
3.2.10 The DR in Quantum Wires (QWs) of HD Germanium ... 228
3.2.11 The DR in Quantum Wires (QWs) of HD Gallium Antimonide ... 231
3.2.12 The DR in Quantum Wells (QWs) of HD II–V Materials ... 232
3.2.13 The DR in Quantum Wells (QWs) of HD Lead Germanium Telluride ... 234
3.2.14 The DR in Quantum Wires (QWs) of HD Zinc and Cadmium Diphosphides 236

3.3 Summary and Conclusion .. 238
3.4 Open Research Problems ... 239

References .. 240
4 The DRs in Quantum Dots (QDs) of Heavily Doped (HD) Non-parabolic Materials .. 243
 4.1 Introduction ... 243
 4.2 Theoretical Background .. 244
 4.2.1 The DR in Quantum Dot (QD) of HD Nonlinear Optical Materials .. 244
 4.2.2 The DR in Quantum Dot (QD) of HD III–V Materials ... 245
 4.2.3 The DR in Quantum Dot (QD) of HD II–VI Materials ... 252
 4.2.4 The DR in Quantum Dot (QD) of HD IV–VI Materials ... 252
 4.2.5 The DR in Quantum Dot (QD) of HD Stressed Kane Type Materials .. 255
 4.2.6 The DR in Quantum Dot (QD) of HD Te ... 255
 4.2.7 The DR in Quantum Dot (QD) of HD Gallium Phosphide .. 256
 4.2.8 The DR in Quantum Dot (QD) of HD Platinum Antimonide .. 257
 4.2.9 The DR in Quantum Dot (QD) of HD Bismuth Telluride .. 257
 4.2.10 The DR in Quantum Dot (QD) of HD Germanium .. 258
 4.2.11 The DR in Quantum Dot (QD) of HD Gallium Antimonide .. 260
 4.2.12 The DR in Quantum Dot (QD) of HD II–V Semiconductors ... 262
 4.2.13 The DR in Quantum Dot (QD) of HD Lead Germanium Telluride ... 263
 4.2.14 The DR in Quantum Dot (QD) of HD Zinc and Cadmium Diphosphides 264
 4.3 Summary and Conclusion .. 265
 4.4 Open Research Problems .. 266
References .. 267

5 The DR in Doping Superlattices of HD Non-parabolic Semiconductors ... 269
 5.1 Introduction ... 269
 5.2 Theoretical Background .. 269
 5.2.1 The DR in Doping Superlattices of HD Nonlinear Optical Semiconductors 269
 5.2.2 The DR in Doping Superlattices of HD III–V, Ternary and Quaternary Semiconductors 271
 5.2.3 The DR in Doping Superlattices of HD II–VI Semiconductors .. 276
5.2.4 The DR in Doping Superlattices of HD IV–VI
Semiconductors .. 278
5.2.5 The DR in Doping Superlattices of HD Stressed
Kane Type Semiconductors 280
5.3 Summary and Conclusion 282
5.4 Open Research Problems 283
References ... 283

6 The DR in Accumulation and Inversion Layers
of Non-parabolic Semiconductors 285
6.1 Introduction ... 285
6.2 Theoretical Background 286
 6.2.1 The DR in Accumulation and Inversion Layers
 of Non-linear Optical Semiconductors 286
 6.2.2 The DR in Accumulation and Inversion Layers
 of III–V, Ternary and Quaternary Semiconductors 289
 6.2.3 The DR in Accumulation and Inversion Layers
 of II–VI Semiconductors 294
 6.2.4 The DR in Accumulation and Inversion Layers
 of IV–VI Semiconductors 297
 6.2.5 The DR in Accumulation and Inversion Layers
 of Stressed Kane Type Semiconductors 299
 6.2.6 The DR in Accumulation and Inversion Layers
 of Germanium .. 301
6.3 Summary and Conclusion 303
6.4 Open Research Problems 304
References ... 305

7 The DR in Heavily Doped (HD) Non-parabolic Semiconductors
Under Magnetic Quantization 307
7.1 Introduction ... 307
7.2 Theoretical Background 308
 7.2.1 The DR in HD Nonlinear Optical Semiconductors
 Under Magnetic Quantization 308
 7.2.2 The DR in HD III–V Semiconductors
 Under Magnetic Quantization 311
 7.2.3 The DR in HD II–VI Semiconductors
 Under Magnetic Quantization 317
 7.2.4 The DR in HD IV–VI Semiconductors
 Under Magnetic Quantization 317
 7.2.5 The DR in HD Stressed Kane Type
 Semiconductors Under Magnetic Quantization 323
 7.2.6 The DR in HD Te Under Magnetic Quantization 325
 7.2.7 The DR in HD Gallium Phosphide
 Under Magnetic Quantization 325
7.2.8 The DR in HD Platinum Antimonide Under Magnetic Quantization 326
7.2.9 The DR in HD Bismuth Telluride Under Magnetic Quantization 327
7.2.10 The DR in HD Germanium Under Magnetic Quantization 327
7.2.11 The DR in HD Gallium Antimonide Under Magnetic Quantization 328
7.2.12 The DR in HD II–V Materials Under Magnetic Quantization 329
7.2.13 The DR in HD Lead Germanium Telluride Under Magnetic Quantization 331
7.3 Discussion ... 332
7.4 Open Research Problems ... 340
References .. 341

8 The DR in HDs Under Cross-Fields Configuration ... 345
8.1 Introduction .. 345
8.2 Theoretical Background ... 346
8.2.1 The DR in HD Nonlinear Optical Semiconductors Under Cross-Fields Configuration .. 346
8.2.2 The DR in HD Kane Type III–V Semiconductors Under Cross-Fields Configuration .. 349
8.2.3 The DR in HD II–VI Semiconductors Under Cross-Fields Configuration 354
8.2.4 The DR in HD IV–VI Semiconductors Under Cross-Fields Configuration 356
8.2.5 The DR in HD Stressed Kane Type Semiconductors Under Cross-Fields Configuration .. 359
8.3 Summary and Conclusion ... 362
8.4 Open Research Problems ... 363
References .. 363

9 The DR in Heavily Doped (HD) Non-parabolic Semiconductors Under Magneto-Size Quantization ... 365
9.1 Introduction .. 365
9.2 Theoretical Background ... 366
9.2.1 The DR in HD Nonlinear Optical Semiconductors Under Magneto-Size Quantization .. 366
9.2.2 The DR in QWs of HD III–V Semiconductors Under Magneto-Size Quantization 366
9.2.3 The DR in HD II–VI Semiconductors Under Magneto-Size Quantization 368
9.2.4 The DR in HD IV–VI Semiconductors Under Magneto Size-Quantization 368
9.2.5 The DR in HD Stressed Kane Type Semiconductors Under Magneto-Size Quantization 370
9.2.6 The DR in HD Te Under Magneto Size-Quantization 371
9.2.7 The DR in HD Gallium Phosphide Under Magneto Size Quantization 371
9.2.8 The DR in HD Platinum Antimonide Under Magneto Size Quantization 371
9.2.9 The DR in HD Bismuth Telluride Under Magneto Size Quantization 372
9.2.10 The DR in HD Germanium Under Magneto Size Quantization 372
9.2.11 The DR in HD Gallium Antimonide Under Magneto Size Quantization 373
9.2.12 The DR in HD II–V Materials Under Magneto Size Quantization 373
9.2.13 The DR in HD Lead Germanium Telluride Under Magneto Size Quantization 374
9.3 Summary and Conclusion 374
9.4 Open Research Problems 375
References 376

10 The DR in Heavily Doped Ultra-thin Films (HDUFs) Under Cross-Fields Configuration 379
10.1 Introduction 379
10.2 Theoretical Background 379
 10.2.1 The DR in Heavily Doped Ultra-thin Films (HDUFs) of Nonlinear Optical Semiconductors Under Cross-Fields Configuration 379
 10.2.2 The DR in Heavily Doped Ultra-thin Films (HDUFs) of Type III–V Semiconductors Under Cross-Fields Configuration 380
 10.2.3 The DR in Heavily Doped Ultra-thin Films (HDUFs) of II–VI Semiconductors Under Cross-Fields Configuration 382
 10.2.4 The DR in Heavily Doped Ultra-thin Films (HDUFs) of IV–VI Semiconductors Under Cross-Fields Configuration 383
 10.2.5 The DR in Heavily Doped Ultra-thin Films (HDUFs) of Stressed Semiconductors Under Cross-Fields Configuration 384
10.3 Summary and Conclusion 385
10.4 Open Research Problems 385
11 The DR in Doping Superlattices of HD Non-parabolic Semiconductors Under Magnetic Quantization 387
11.1 Introduction 387
11.2 Theoretical Background 387
 11.2.1 The DR in Doping Superlattices of HD Nonlinear Optical Semiconductors Under Magnetic Quantization 387
 11.2.2 The DR in Doping Superlattices of HD III–V, Ternary and Quaternary Semiconductors Under Magnetic Quantization 388
 11.2.3 The DR in Doping Superlattices of HD II–VI Semiconductors Under Magnetic Quantization 390
 11.2.4 The DR in Doping Superlattices of HD IV–VI Semiconductor Under Magnetic Quantization 391
 11.2.5 The DR in Doping Superlattices of HD Stressed Kane Type Semiconductors Under Magnetic Quantization 392
11.3 Summary and Conclusion 393
11.4 Open Research Problems 393
References .. 394

12 The DR in Accumulation and Inversion Layers of Non-parabolic Semiconductors Under Magnetic Quantization 397
12.1 Introduction 397
12.2 Theoretical Background 398
 12.2.1 The DR in Accumulation and Inversion Layers of Nonlinear Optical Semiconductors Under Magnetic Quantization 398
 12.2.2 The DR in Accumulation and Inversion Layers of III–V Semiconductors Under Magnetic Quantization 398
 12.2.3 The DR in Accumulation and Inversion Layers of II–VI Semiconductors Under Magnetic Quantization 400
 12.2.4 The DR in Accumulation and Inversion Layers of IV–VI Semiconductors Under Magnetic Quantization 401
 12.2.5 The DR in Accumulation and Inversion Layers of Stressed Kane Type Semiconductors Under Magnetic Quantization 402
 12.2.6 The DR in Accumulation and Inversion Layers of Germanium Under Magnetic Quantization 403
Part III The DR in Heavily Doped (HD) Quantum Confined Superlattices

13 The DR in QWHDSLs ... 409
13.1 Introduction .. 409
13.2 Theoretical Background ... 410
 13.2.1 The DR in III–V Quantum Well HD Superlattices with Graded Interfaces ... 410
 13.2.2 The DR in II–VI Quantum Well HD Superlattices with Graded Interfaces ... 414
 13.2.3 The DR in IV–VI Quantum Well HD Superlattices with Graded Interfaces ... 416
 13.2.4 The DR in HgTe/CdTe Quantum Well HD Superlattices with Graded Interfaces ... 418
 13.2.5 The DR in Strained Layer Quantum Well HD Superlattices with Graded Interfaces ... 420
 13.2.6 The DR in III–V Quantum Well HD Effective Mass Super Lattices ... 422
 13.2.7 The DR in II–VI Quantum Well HD Effective Mass Super Lattices ... 424
 13.2.8 The DR in IV–VI Quantum Well HD Effective Mass Super Lattices ... 426
 13.2.9 The DR in HgTe/CdTe Quantum Well HD Effective Mass Super Lattices ... 427
 13.2.10 The DR in Strained Layer Quantum Well HD Effective Mass Super Lattices ... 428
13.3 Summary and Conclusion ... 430
13.4 Open Research Problem ... 431
References .. 431

14 The DR in Quantum Wire HDSLs .. 433
14.1 Introduction .. 433
14.2 Theoretical Background ... 433
 14.2.1 The DR in III–V Quantum Wire HD Superlattices with Graded Interfaces ... 433
 14.2.2 The DR in II–VI Quantum Wire HD Superlattices with Graded Interfaces ... 434
 14.2.3 The DR in IV–VI Quantum Wire HD Superlattices with Graded Interfaces ... 434
 14.2.4 The DR in HgTe/CdTe Quantum Wire HD Superlattices with Graded Interfaces ... 435
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.5</td>
<td>The DR in Strained Layer Quantum Wire HD Superlattices with Graded Interfaces</td>
<td>436</td>
</tr>
<tr>
<td>14.2.6</td>
<td>The DR in III–V Quantum Wire HD Effective Mass Superlattices</td>
<td>437</td>
</tr>
<tr>
<td>14.2.7</td>
<td>The DR in II–VI Quantum Wire HD Effective Mass Superlattices</td>
<td>437</td>
</tr>
<tr>
<td>14.2.8</td>
<td>The DR in IV–VI Quantum Wire HD Effective Mass Superlattices</td>
<td>438</td>
</tr>
<tr>
<td>14.2.9</td>
<td>The DR in HgTe/CdTe Quantum Wire HD Effective Mass Superlattices</td>
<td>439</td>
</tr>
<tr>
<td>14.2.10</td>
<td>The DR in Strained Layer Quantum Wire HD Effective Mass Superlattices</td>
<td>439</td>
</tr>
<tr>
<td>14.3</td>
<td>Summary and Conclusion</td>
<td>440</td>
</tr>
<tr>
<td>14.4</td>
<td>Open Research Problem</td>
<td>441</td>
</tr>
<tr>
<td>14</td>
<td>References</td>
<td>441</td>
</tr>
</tbody>
</table>

15 The DR in Quantum Dot HDSLs. .. 443

15.1	Introduction	443
15.2	Theoretical Background	443
15.2.1	The DR in III–V Quantum Dot HD Superlattices with Graded Interfaces	443
15.2.2	The DR in II–VI Quantum Dot HD Superlattices with Graded Interfaces	444
15.2.3	The DR in IV–VI Quantum Dot HD Superlattices with Graded Interfaces	444
15.2.4	The DR in HgTe/CdTe Quantum Dot HD Superlattices with Graded Interfaces	445
15.2.5	The DR in Strained Layer Quantum Dot HD Superlattices with Graded Interfaces	445
15.2.6	The DR in III–V Quantum Dot HD Effective Mass Superlattices	445
15.2.7	The DR in II–VI Quantum Dot HD Effective Mass Superlattices	446
15.2.8	The DR in IV–VI Quantum Dot HD Effective Mass Superlattices	446
15.2.9	The DR in HgTe/CdTe Quantum Dot HD Effective Mass Superlattices	447
15.2.10	The DR in Strained Layer Quantum Dot HD Effective Mass Superlattices	447
15.3	Summary and Conclusion	448
15.4	Open Research Problem	448
15	References	448
16 The DR in HDSLs Under Magnetic Quantization .. 451
 16.1 Introduction .. 451
 16.2 Theoretical Background ... 451
 16.2.1 The DR in III–V HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 451
 16.2.2 The DR in II–VI HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 454
 16.2.3 The DR in IV–VI HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 457
 16.2.4 The DR in HgTe/CdTe HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 459
 16.2.5 The DR in Strained Layer HD Superlattices with Graded Interfaces Under Magnetic Quantization 462
 16.2.6 The DR in III–V HD Effective Mass Superlattices Under Magnetic Quantization ... 463
 16.2.7 The DR in II–VI HD Effective Mass Superlattices Under Magnetic Quantization ... 465
 16.2.8 The DR in IV–VI HD Effective Mass Superlattices Under Magnetic Quantization ... 466
 16.2.9 The DR in HgTe/CdTe HD Effective Mass Superlattices Under Magnetic Quantization .. 467
 16.2.10 The DR in Strained Layer HD Effective Mass Superlattices Under Magnetic Quantization .. 468

 16.3 Summary and Conclusion .. 469
 16.4 Open Research Problems .. 470
References ... 470

17 The DR in QWHDSLs Under Magnetic Quantization .. 471
 17.1 Introduction .. 471
 17.2 Theoretical Background ... 471
 17.2.1 The DR in III–V Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 471
 17.2.2 The DR in II–VI Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 472
 17.2.3 The DR in IV–VI Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 472
 17.2.4 The DR in HgTe/CdTe Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization .. 473
17.2.5 The DR in Strained Layer Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 473
17.2.6 The DR in III–V Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 473
17.2.7 The DR in II–VI Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 474
17.2.8 The DR in IV–VI Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 474
17.2.9 The DR in HgTe/CdTe Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 475
17.2.10 The DR in Strained Layer Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 475

17.3 Summary and Conclusion .. 476
17.4 Open Research Problems .. 476

Part IV Dispersion Relations in HD Kane Type Semiconductors in the Presence of Light Waves

18 The DR Under Photo Excitation in HD Kane Type Semiconductors .. 481
 18.1 Introduction .. 481
 18.2 Theoretical Background .. 482
 18.2.1 The Formulation of the Electron Dispersion Law in the Presence of Light Waves in HD III–V, Ternary and Quaternary Semiconductors 482
 18.2.2 The DR Under Magnetic Quantization in HD Kane Type Semiconductors in the Presence of Light Waves .. 496
 18.2.3 The DR Under Crossed Electric and Quantizing Magnetic Fields in HD Kane Type Semiconductors in the Presence of Light Waves .. 498
 18.2.4 The DR in QWs of HD Kane Type Semiconductors in the Presence of Light Waves .. 501
 18.2.5 The DR in Doping Superlattices of HD Kane Type Semiconductors in the Presence of Light Waves .. 502
 18.2.6 The DR of QDs of HD Kane Type Semiconductors in the Presence of Light Waves .. 505
 18.2.7 The Magneto DR in QWs of HD Kane Type Semiconductors in the Presence of Light Waves .. 507
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2.8</td>
<td>The DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>508</td>
</tr>
<tr>
<td>18.2.9</td>
<td>The DR in NWs of HD Kane Type Semiconductors in the Presence of Light Waves</td>
<td>513</td>
</tr>
<tr>
<td>18.2.10</td>
<td>The Magneto DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>517</td>
</tr>
<tr>
<td>18.2.11</td>
<td>The Magneto DR in Doping Superlattices of HD Kane Type Semiconductors in the Presence of Light Waves</td>
<td>520</td>
</tr>
<tr>
<td>18.2.12</td>
<td>The DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>521</td>
</tr>
<tr>
<td>18.2.13</td>
<td>The DR in NWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>524</td>
</tr>
<tr>
<td>18.2.14</td>
<td>The Magneto DR in HD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>526</td>
</tr>
<tr>
<td>18.2.15</td>
<td>The Magneto DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>528</td>
</tr>
<tr>
<td>18.2.16</td>
<td>The DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>529</td>
</tr>
<tr>
<td>18.2.17</td>
<td>The DR in NWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>533</td>
</tr>
<tr>
<td>18.2.18</td>
<td>The DR in Quantum Dot HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>536</td>
</tr>
<tr>
<td>18.2.19</td>
<td>The Magneto DR in HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>536</td>
</tr>
<tr>
<td>18.2.20</td>
<td>The Magneto DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>539</td>
</tr>
<tr>
<td>18.3</td>
<td>Summary and Conclusion</td>
<td>540</td>
</tr>
<tr>
<td>18.4</td>
<td>Open Research Problems</td>
<td>542</td>
</tr>
<tr>
<td>References</td>
<td>542</td>
<td></td>
</tr>
</tbody>
</table>
Part V Dispersion Relations in HD Kane Type Semiconductors in the Presence of Intense Electric Field

19 The DR Under Intense Electric Field in HD Kane Type Semiconductors ... 547
 19.1 Introduction ... 547
 19.2 Theoretical Background ... 548
 19.2.1 The Formulation of the Electron Dispersion Law in the Presence of Intense Electric Field in HD III–V, Ternary and Quaternary Semiconductors .. 548
 19.2.2 The DR Under Magnetic Quantization in HD Kane Type Semiconductors in the Presence of Intense Electric Field .. 558
 19.2.3 The DR in QWs in HD Kane Type Semiconductors in the Presence of Intense Electric Field 559
 19.2.4 The DR in NWs in HD Kane Type Semiconductors in the Presence of Intense Electric Field 560
 19.2.5 The DR in QDs in HD Kane Type Semiconductors in the Presence of Intense Electric Field 561
 19.2.6 The Magneto DR in QWs of HD Kane Type Semiconductors in the Presence of Intense Electric Field 561
 19.2.7 The DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Intense Electric Field ... 561
 19.2.8 The Magneto DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Intense Electric Field ... 563
 19.2.9 The DR in Doping Superlattices of HD Kane Type Semiconductors in the Presence of Intense Electric Field .. 564
 19.2.10 The Magneto DR in Inversion Layers of Kane Type Semiconductors in the Presence of Intense Electric Field .. 565
 19.2.11 The DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Intense Electric Field .. 566
 19.2.12 The DR in NWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Intense Electric Field .. 567
 19.2.13 The DR in Quantum Dot HD Superlattices of Kane Type Semiconductors in the Presence of Intense Electric Field .. 568
20.2.19 Fowler-Nordheim Field Emission 602
20.2.20 Optical Effective Mass 602
20.2.21 Einstein’s Photoemission 603
20.2.22 Righi-Leduc Coefficient 603
20.2.23 Electric Susceptibility 604
20.2.24 Electric Susceptibility Mass 604
20.2.25 Electron Diffusion Thermo-Power 605
20.2.26 Hydrostatic Piezo-resistance Coefficient 605
20.2.27 Relaxation Time for Acoustic Mode Scattering . 605
20.2.28 Gate Capacitance .. 606
20.3 Open Research Problems 606
References .. 607

21 Conclusion and Scope for Future Research 615
References .. 618

Index ... 619