Contents

Part I Dispersion Relations in HD Quantum Wells, Nano Wires and Dots in the Presence of Magnetic Field

1 The DRs in Low Dimensional HD Systems in the Presence of Magnetic Field .. 3
 1.1 Introduction .. 3
 1.2 Theoretical Background ... 6
 1.2.1 The DR in Quantum Wells of HD III–V, Ternary and Quaternary Materials in the Presence of Magnetic Field .. 6
 1.2.2 The DR in Nano Wires of HD III–V Semiconductors in the Presence of Magnetic Field . . 19
 1.2.3 The DR in Quantum Dot of HD III–V Semiconductors in the Presence of Magnetic Field . . 25
 1.2.4 The DR in Quantum Wells of HD III–V Semiconductors in the Presence of Cross Fields . . . 31
 1.2.5 The DR in Nano-Wires of HD III–V Semiconductors in the Presence of Cross Fields . . . 34
 1.2.6 The DR in Quantum Dot of HD III–V Semiconductors in the Presence of Cross Fields . . . 35
 1.2.7 The DR in Quantum Wells of HD IV–VI Semiconductors in the Presence of Magnetic Field . . 37
 1.2.8 The DR in Nano Wires of HD IV–VI Semiconductors in the Presence of Magnetic Field . . . 51
 1.2.9 The DR in Quantum Dot of HD IV–VI Semiconductors in the Presence of Magnetic Field . . 60
1.2.10 The DR in Cylindrical Quantum Dot of HD III–V Semiconductors in the Presence of Crossed Electric and Magnetic Fields .. 68
1.2.11 The DR in Quantum Wells of HD III–V Semiconductors in the Presence of Arbitrarily Oriented Magnetic Field ... 74

1.3 Results and Discussion .. 87

1.4 Open Research Problems ... 99

References ... 105

Part II Dispersion Relations in HD Quantum Confined Non-parabolic Materials

2 The DRs in Ultrathin Films (UFs) of Heavily Doped (HD) Non-parabolic Materials .. 117

2.1 Introduction ... 117

2.2 Theoretical Background .. 119

2.2.1 The DR in Ultrathin Films (UFs) of HD Nonlinear Optical Materials .. 119

2.2.2 The DR in Ultrathin Films (UFs) of HD III–V Materials .. 130

2.2.3 The DR in Ultrathin Films (UFs) of HD II–VI Materials .. 141

2.2.4 The DR in Ultrathin Films (UFs) of HD IV–VI Materials .. 143

2.2.5 The DR in Ultrathin Films (UFs) of HD Stressed Kane Type Materials .. 157

2.2.6 The DR in Ultrathin Films (UFs) of HD Te .. 162

2.2.7 The DR in Ultrathin Films (UFs) of HD Gallium Phosphide. .. 165

2.2.8 The DR in Ultrathin Films (UFs) of HD Platinum Antimonide. .. 169

2.2.9 The DR in Ultrathin Films (UFs) of HD Bismuth Telluride .. 172

2.2.10 The DR in Ultrathin Films (UFs) of HD Germanium .. 174

2.2.11 The DR in Ultrathin Films (UFs) of HD Gallium Antimonide. .. 181

2.2.12 The DR in Ultrathin Films (UFs) of HD II–V Materials .. 183
2.2.13 The DR in Ultrathin Films (UFs) of HD Lead Germanium Telluride 184
2.2.14 The DR in Ultrathin Films (UFs) of HD Zinc and Cadmium Diphosphides 185

2.3 Results and Discussion ... 187
2.4 Open Research Problems ... 203

References ... 205

3 The DRs in Quantum Wires (QWs) of Heavily Doped (HD) Non-parabolic Materials ... 209

3.1 Introduction .. 209

3.2 Theoretical Background ... 210

3.2.1 The DR in Quantum Wires (QWs) of HD Nonlinear Optical Materials 210
3.2.2 The DR in Quantum Wires (QWs) of HD III–V Materials .. 211
3.2.3 The DR in Quantum Wires (QWs) of HD II–VI Materials 217
3.2.4 The DR in Quantum Wires (QWs) of HD IV–VI Materials 218
3.2.5 The DR in QWs of HD Stressed Kane Type Materials .. 222
3.2.6 The DR in Quantum Wires (QWs) of HD Te .. 223
3.2.7 The DR in Quantum Wires (QWs) of HD Gallium Phosphide 225
3.2.8 The DR in Quantum Wires (QWs) of HD Platinum Antimonide 226
3.2.9 The DR in Quantum Wires (QWs) of HD Bismuth Telluride 227
3.2.10 The DR in Quantum Wires (QWs) of HD Germanium .. 228
3.2.11 The DR in Quantum Wires (QWs) of HD Gallium Antimonide 231
3.2.12 The DR in Quantum Wells (QWs) of HD II–V Materials .. 232
3.2.13 The DR in Quantum Wells (QWs) of HD Lead Germanium Telluride 234
3.2.14 The DR in Quantum Wires (QWs) of HD Zinc and Cadmium Diphosphides 236

3.3 Summary and Conclusion ... 238
3.4 Open Research Problems ... 239

References ... 240
4 The DRs in Quantum Dots (QDs) of Heavily Doped (HD) Non-parabolic Materials

4.1 Introduction ... 243
4.2 Theoretical Background .. 244
4.2.1 The DR in Quantum Dot (QD) of HD Nonlinear Optical Materials .. 244
4.2.2 The DR in Quantum Dot (QD) of HD III–V Materials .. 245
4.2.3 The DR in Quantum Dot (QD) of HD II–VI Materials .. 252
4.2.4 The DR in Quantum Dot (QD) of HD IV–VI Materials .. 252
4.2.5 The DR in Quantum Dot (QD) of HD Stressed Kane Type Materials 255
4.2.6 The DR in Quantum Dot (QD) of HD Te. ... 255
4.2.7 The DR in Quantum Dot (QD) of HD Gallium Phosphide. ... 256
4.2.8 The DR in Quantum Dot (QD) of HD Platinum Antimonide. .. 257
4.2.9 The DR in Quantum Dot (QD) of HD Bismuth Telluride. .. 257
4.2.10 The DR in Quantum Dot (QD) of HD Germanium. ... 258
4.2.11 The DR in Quantum Dot (QD) of HD Gallium Antimonide. ... 260
4.2.12 The DR in Quantum Dot (QD) of HD II–V Semiconductors. ... 262
4.2.13 The DR in Quantum Dot (QD) of HD Lead Germanium Telluride. 263
4.2.14 The DR in Quantum Dot (QD) of HD Zinc and Cadmium Diphosphides 264
4.3 Summary and Conclusion .. 265
4.4 Open Research Problems ... 266
References .. 267

5 The DR in Doping Superlattices of HD Non-parabolic Semiconductors. .. 269
5.1 Introduction .. 269
5.2 Theoretical Background ... 269
5.2.1 The DR in Doping Superlattices of HD Nonlinear Optical Semiconductors 269
5.2.2 The DR in Doping Superlattices of HD III–V, Ternary and Quaternary Semiconductors 271
5.2.3 The DR in Doping Superlattices of HD II–VI Semiconductors. ... 276
7.2.8 The DR in HD Platinum Antimonide Under Magnetic Quantization

326

7.2.9 The DR in HD Bismuth Telluride Under Magnetic Quantization

327

7.2.10 The DR in HD Germanium Under Magnetic Quantization

327

7.2.11 The DR in HD Gallium Antimonide Under Magnetic Quantization

328

7.2.12 The DR in HD II–V Materials Under Magnetic Quantization

329

7.2.13 The DR in HD Lead Germanium Telluride Under Magnetic Quantization

331

7.3 Discussion

332

7.4 Open Research Problems

340

References

341

8 The DR in HDs Under Cross-Fields Configuration

345

8.1 Introduction

345

8.2 Theoretical Background

346

8.2.1 The DR in HD Nonlinear Optical Semiconductors Under Cross-Fields Configuration

346

8.2.2 The DR in HD Kane Type III–V Semiconductors Under Cross-Fields Configuration

349

8.2.3 The DR in HD II–VI Semiconductors Under Cross-Fields Configuration

354

8.2.4 The DR in HD IV–VI Semiconductors Under Cross-Fields Configuration

356

8.2.5 The DR in HD Stressed Kane Type Semiconductors Under Cross-Fields Configuration

359

8.3 Summary and Conclusion

362

8.4 Open Research Problems

363

References

363

9 The DR in Heavily Doped (HD) Non-parabolic Semiconductors Under Magneto-Size Quantization

365

9.1 Introduction

365

9.2 Theoretical Background

366

9.2.1 The DR in HD Nonlinear Optical Semiconductors Under Magneto-Size Quantization

366

9.2.2 The DR in QWs of HD III–V Semiconductors Under Magneto-Size Quantization

366

9.2.3 The DR in HD II–VI Semiconductors Under Magneto-Size Quantization

368

9.2.4 The DR in HD IV–VI Semiconductors Under Magneto Size-Quantization

368
9.2.5 The DR in HD Stressed Kane Type Semiconductors
Under Magneto-Size Quantization ... 370
9.2.6 The DR in HD Te Under Magneto
Size-Quantization ... 371
9.2.7 The DR in HD Gallium Phosphide Under
Magneto Size Quantization ... 371
9.2.8 The DR in HD Platinum Antimonide Under
Magneto Size Quantization ... 371
9.2.9 The DR in HD Bismuth Telluride Under Magneto
Size Quantization ... 372
9.2.10 The DR in HD Germanium Under Magneto
Size Quantization ... 372
9.2.11 The DR in HD Gallium Antimonide Under
Magneto Size Quantization ... 373
9.2.12 The DR in HD II–V Materials Under Magneto
Size Quantization ... 373
9.2.13 The DR in HD Lead Germanium Telluride
Under Magneto Size Quantization ... 374
9.3 Summary and Conclusion ... 374
9.4 Open Research Problems ... 375
References ... 376

10 The DR in Heavily Doped Ultra-thin Films (HDUFs)
Under Cross-Fields Configuration ... 379
10.1 Introduction ... 379
10.2 Theoretical Background ... 379
10.2.1 The DR in Heavily Doped Ultra-thin Films
(HDUFs) of Nonlinear Optical Semiconductors
Under Cross-Fields Configuration ... 379
10.2.2 The DR in Heavily Doped Ultra-thin Films
(HDUFs) of Type III–V Semiconductors
Under Cross-Fields Configuration ... 380
10.2.3 The DR in Heavily Doped Ultra-thin Films
(HDUFs) of II–VI Semiconductors Under
Cross-Fields Configuration ... 382
10.2.4 The DR in Heavily Doped Ultra-thin Films
(HDUFs) of IV–VI Semiconductors Under
Cross-Fields Configuration ... 383
10.2.5 The DR in Heavily Doped Ultra-thin Films
(HDUFs) of Stressed Semiconductors Under
Cross-Fields Configuration ... 384
10.3 Summary and Conclusion ... 385
10.4 Open Research Problems ... 385
11 The DR in Doping Superlattices of HD Non-parabolic Semiconductors Under Magnetic Quantization 387
 11.1 Introduction ... 387
 11.2 Theoretical Background .. 387
 11.2.1 The DR in Doping Superlattices of HD Nonlinear Optical Semiconductors Under Magnetic Quantization 387
 11.2.2 The DR in Doping Superlattices of HD III–V, Ternary and Quaternary Semiconductors Under Magnetic Quantization 388
 11.2.3 The DR in Doping Superlattices of HD II–VI Semiconductors Under Magnetic Quantization 390
 11.2.4 The DR in Doping Superlattices of HD IV–VI Semiconductor Under Magnetic Quantization 391
 11.2.5 The DR in Doping Superlattices of HD Stressed Kane Type Semiconductors Under Magnetic Quantization 392
 11.3 Summary and Conclusion ... 393
 11.4 Open Research Problems ... 393
References .. 394

12 The DR in Accumulation and Inversion Layers of Non-parabolic Semiconductors Under Magnetic Quantization 397
 12.1 Introduction ... 397
 12.2 Theoretical Background .. 398
 12.2.1 The DR in Accumulation and Inversion Layers of Nonlinear Optical Semiconductors Under Magnetic Quantization 398
 12.2.2 The DR in Accumulation and Inversion Layers of III–V Semiconductors Under Magnetic Quantization 398
 12.2.3 The DR in Accumulation and Inversion Layers of II–VI Semiconductors Under Magnetic Quantization 400
 12.2.4 The DR in Accumulation and Inversion Layers of IV–VI Semiconductors Under Magnetic Quantization 401
 12.2.5 The DR in Accumulation and Inversion Layers of Stressed Kane Type Semiconductors Under Magnetic Quantization 402
 12.2.6 The DR in Accumulation and Inversion Layers of Germanium Under Magnetic Quantization 403
Part III The DR in Heavily Doped (HD) Quantum Confined Superlattices

13 The DR in QWHDSLs .. 409
 13.1 Introduction ... 409
 13.2 Theoretical Background . 410
 13.2.1 The DR in III–V Quantum Well HD Superlattices
 with Graded Interfaces 410
 13.2.2 The DR in II–VI Quantum Well HD Superlattices
 with Graded Interfaces 414
 13.2.3 The DR in IV–VI Quantum Well HD Superlattices
 with Graded Interfaces 416
 13.2.4 The DR in HgTe/CdTe Quantum Well HD Superlattices
 with Graded Interfaces 418
 13.2.5 The DR in Strained Layer Quantum Well HD Superlattices
 with Graded Interfaces 420
 13.2.6 The DR in III–V Quantum Well HD Effective Mass Super Lattices 422
 13.2.7 The DR in II–VI Quantum Well HD Effective Mass Super Lattices 424
 13.2.8 The DR in IV–VI Quantum Well HD Effective Mass Super Lattices 426
 13.2.9 The DR in HgTe/CdTe Quantum Well HD Effective Mass Super Lattices 427
 13.2.10 The DR in Strained Layer Quantum Well HD Effective Mass Super Lattices 428
 13.3 Summary and Conclusion 430
 13.4 Open Research Problems 431
 References .. 431

14 The DR in Quantum Wire HDSDLs 433
 14.1 Introduction ... 433
 14.2 Theoretical Background 433
 14.2.1 The DR in III–V Quantum Wire HD Superlattices
 with Graded Interfaces 433
 14.2.2 The DR in II–VI Quantum Wire HD Superlattices
 with Graded Interfaces 434
 14.2.3 The DR in IV–VI Quantum Wire HD Superlattices
 with Graded Interfaces 434
 14.2.4 The DR in HgTe/CdTe Quantum Wire HD Superlattices
 with Graded Interfaces 435
 References .. 435
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.5</td>
<td>The DR in Strained Layer Quantum Wire HD Superlattices with Graded Interfaces</td>
</tr>
<tr>
<td>14.2.6</td>
<td>The DR in III–V Quantum Wire HD Effective Mass Super Lattices</td>
</tr>
<tr>
<td>14.2.7</td>
<td>The DR in II–VI Quantum Wire HD Effective Mass Super Lattices</td>
</tr>
<tr>
<td>14.2.8</td>
<td>The DR in IV–VI Quantum Wire HD Effective Mass Super Lattices</td>
</tr>
<tr>
<td>14.2.9</td>
<td>The DR in HgTe/CdTe Quantum Wire HD Effective Mass Super Lattices</td>
</tr>
<tr>
<td>14.2.10</td>
<td>The DR in Strained Layer Quantum Wire HD Effective Mass Super Lattices</td>
</tr>
<tr>
<td>14.3</td>
<td>Summary and Conclusion</td>
</tr>
<tr>
<td>14.4</td>
<td>Open Research Problem</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

15 The DR in Quantum Dot HDSLs |
15.1	Introduction
15.2	Theoretical Background
15.2.1	The DR in III–V Quantum Dot HD Superlattices with Graded Interfaces
15.2.2	The DR in II–VI Quantum Dot HD Superlattices with Graded Interfaces
15.2.3	The DR in IV–VI Quantum Dot HD Superlattices with Graded Interfaces
15.2.4	The DR in HgTe/CdTe Quantum Dot HD Superlattices with Graded Interfaces
15.2.5	The DR in Strained Layer Quantum Dot HD Superlattices with Graded Interfaces
15.2.6	The DR in III–V Quantum Dot HD Effective Mass Super Lattices
15.2.7	The DR in II–VI Quantum Dot HD Effective Mass Super Lattices
15.2.8	The DR in IV–VI Quantum Dot HD Effective Mass Super Lattices
15.2.9	The DR in HgTe/CdTe Quantum Dot HD Effective Mass Super Lattices
15.2.10	The DR in Strained Layer Quantum Dot HD Effective Mass Super Lattices
15.3	Summary and Conclusion
15.4	Open Research Problem
References	
16 The DR in HDSLs Under Magnetic Quantization 451
16.1 Introduction ... 451
16.2 Theoretical Background ... 451
16.2.1 The DR in III–V HD Superlattices with Graded Interfaces Under Magnetic Quantization 451
16.2.2 The DR in II–VI HD Superlattices with Graded Interfaces Under Magnetic Quantization 454
16.2.3 The DR in IV–VI HD Superlattices with Graded Interfaces Under Magnetic Quantization 457
16.2.4 The DR in HgTe/CdTe HD Superlattices with Graded Interfaces Under Magnetic Quantization 459
16.2.5 The DR in Strained Layer HD Superlattices with Graded Interfaces Under Magnetic Quantization 462
16.2.6 The DR in III–V HD Effective Mass Superlattices Under Magnetic Quantization 463
16.2.7 The DR in II–VI HD Effective Mass Superlattices Under Magnetic Quantization 465
16.2.8 The DR in IV–VI HD Effective Mass Superlattices Under Magnetic Quantization 466
16.2.9 The DR in HgTe/CdTe HD Effective Mass Superlattices Under Magnetic Quantization 467
16.2.10 The DR in Strained Layer HD Effective Mass Superlattices Under Magnetic Quantization 468
16.3 Summary and Conclusion ... 469
16.4 Open Research Problems ... 470
References ... 470

17 The DR in QWHDSLs Under Magnetic Quantization 471
17.1 Introduction ... 471
17.2 Theoretical Background ... 471
17.2.1 The DR in III–V Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 471
17.2.2 The DR in II–VI Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 472
17.2.3 The DR in IV–VI Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 472
17.2.4 The DR in HgTe/CdTe Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 473
17.2.5 The DR in Strained Layer Quantum Well HD Superlattices with Graded Interfaces Under Magnetic Quantization 473
17.2.6 The DR in III–V Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 473
17.2.7 The DR in II–VI Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 474
17.2.8 The DR in IV–VI Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 474
17.2.9 The DR in HgTe/CdTe Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 475
17.2.10 The DR in Strained Layer Quantum Well HD Effective Mass Super Lattices Under Magnetic Quantization 475
17.3 Summary and Conclusion .. 476
17.4 Open Research Problems .. 476

Part IV Dispersion Relations in HD Kane Type Semiconductors in the Presence of Light Waves

18 The DR Under Photo Excitation in HD Kane Type Semiconductors ... 481
18.1 Introduction ... 481
18.2 Theoretical Background .. 482
18.2.1 The Formulation of the Electron Dispersion Law in the Presence of Light Waves in HD III–V, Ternary and Quaternary Semiconductors 482
18.2.2 The DR Under Magnetic Quantization in HD Kane Type Semiconductors in the Presence of Light Waves .. 496
18.2.3 The DR Under Crossed Electric and Quantizing Magnetic Fields in HD Kane Type Semiconductors in the Presence of Light Waves 498
18.2.4 The DR in QWs of HD Kane Type Semiconductors in the Presence of Light Waves 501
18.2.5 The DR in Doping Superlattices of HD Kane Type Semiconductors in the Presence of Light Waves 502
18.2.6 The DR of QDs of HD Kane Type Semiconductors in the Presence of Light Waves 505
18.2.7 The Magneto DR in QWs of HD Kane Type Semiconductors in the Presence of Light Waves 507
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2.8</td>
<td>The DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>508</td>
</tr>
<tr>
<td>18.2.9</td>
<td>The DR in NWs of HD Kane Type Semiconductors in the Presence of Light Waves</td>
<td>513</td>
</tr>
<tr>
<td>18.2.10</td>
<td>The Magneto DR in Accumulation and Inversion Layers of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>517</td>
</tr>
<tr>
<td>18.2.11</td>
<td>The Magneto DR in Doping Superlattices of HD Kane Type Semiconductors in the Presence of Light Waves</td>
<td>520</td>
</tr>
<tr>
<td>18.2.12</td>
<td>The DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>521</td>
</tr>
<tr>
<td>18.2.13</td>
<td>The DR in NWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>524</td>
</tr>
<tr>
<td>18.2.14</td>
<td>The Magneto DR in HD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>526</td>
</tr>
<tr>
<td>18.2.15</td>
<td>The Magneto DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Light Waves</td>
<td>528</td>
</tr>
<tr>
<td>18.2.16</td>
<td>The DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>529</td>
</tr>
<tr>
<td>18.2.17</td>
<td>The DR in NWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>533</td>
</tr>
<tr>
<td>18.2.18</td>
<td>The DR in Quantum Dot HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>536</td>
</tr>
<tr>
<td>18.2.19</td>
<td>The Magneto DR in HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>536</td>
</tr>
<tr>
<td>18.2.20</td>
<td>The Magneto DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Light Waves</td>
<td>539</td>
</tr>
<tr>
<td>18.3</td>
<td>Summary and Conclusion</td>
<td>540</td>
</tr>
<tr>
<td>18.4</td>
<td>Open Research Problems</td>
<td>542</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>542</td>
</tr>
</tbody>
</table>
Part V Dispersion Relations in HD Kane Type Semiconductors in the Presence of Intense Electric Field

19 The DR Under Intense Electric Field in HD Kane Type Semiconductors 547
19.1 Introduction .. 547
19.2 Theoretical Background 548
 19.2.1 The Formulation of the Electron Dispersion Law
 in the Presence of Intense Electric Field
 in HD III–V, Ternary and Quaternary
 Semiconductors .. 548
 19.2.2 The DR Under Magnetic Quantization in HD
 Kane Type Semiconductors in the Presence
 of Intense Electric Field 558
 19.2.3 The DR in QWs in HD Kane Type Semiconductors
 in the Presence of Intense Electric Field 559
 19.2.4 The DR in NWs in HD Kane Type Semiconductors
 in the Presence of Intense Electric Field 560
 19.2.5 The DR in QDs in HD Kane Type Semiconductors
 in the Presence of Intense Electric Field 561
 19.2.6 The Magneto DR in QWs of HD Kane Type
 Semiconductors in the Presence of Intense
 Electric Field ... 561
 19.2.7 The DR in Accumulation and Inversion Layers
 of Kane Type Semiconductors in the Presence
 of Intense Electric Field 561
 19.2.8 The Magneto DR in Accumulation and Inversion
 Layers of Kane Type Semiconductors
 in the Presence of Intense Electric Field 563
 19.2.9 The DR in Doping Superlattices of HD Kane Type
 Semiconductors in the Presence of Intense
 Electric Field ... 564
 19.2.10 The Magneto DR in Inversion Layers of Kane Type
 Semiconductors in the Presence of Intense
 Electric Field ... 565
 19.2.11 The DR in QWHD Effective Mass Superlattices
 of Kane Type Semiconductors in the Presence
 of Intense Electric Field 566
 19.2.12 The DR in NWHD Effective Mass Superlattices
 of Kane Type Semiconductors in the Presence
 of Intense Electric Field 567
 19.2.13 The DR in Quantum Dot HD Superlattices
 of Kane Type Semiconductors in the Presence
 of Intense Electric Field 568
19.2.14 The Magneto DR in QWHD Effective Mass Superlattices of Kane Type Semiconductors in the Presence of Intense Electric Field 569
19.2.15 The DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Intense Electric Field 570
19.2.16 The DR in NWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Intense Electric Field 574
19.2.17 The DR in Quantum Dot HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Intense Electric Field 577
19.2.18 The Magneto DR in HD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Intense Electric Field 577
19.2.19 The Magneto DR in QWHD Superlattices of Kane Type Semiconductors with Graded Interfaces in the Presence of Intense Electric Field 580
19.3 Summary and Conclusion . 581
19.4 Open Research Problems . 583
References. 583

20 Few Related Applications . 585
20.1 Introduction . 585
20.2 Different Related Applications . 585
20.2.1 Carrier Statistics . 585
20.2.2 Thermoelectric Power . 586
20.2.3 Debye Screening Length . 587
20.2.4 Carrier Contribution to the Elastic Constants 589
20.2.5 Diffusivity-Mobility Ratio . 590
20.2.6 Measurement of Band-Gap in the Presence of Light Waves . 592
20.2.7 Diffusion Coefficient of the Minority Carriers 596
20.2.8 Nonlinear Optical Response . 596
20.2.9 Third Order Nonlinear Optical Susceptibility 596
20.2.10 Generalized Raman Gain . 597
20.2.11 The Plasma Frequency . 597
20.2.12 The Activity Coefficient . 597
20.2.13 Magneto-Thermal Effect in Quantized Structures 598
20.2.14 Normalized Hall Coefficient 600
20.2.15 Reflection Coefficient . 600
20.2.16 Heat Capacity . 600
20.2.17 Magnetic Susceptibilities . 601
20.2.18 Faraday Rotation . 601
Dispersion Relations in Heavily-Doped Nanostructures
Ghatak, K.P.
2016, LV, 625 p. 31 illus., Hardcover
ISBN: 978-3-319-20999-9