Contents

1 Principles and Megatrends Affecting Transportation 1
 1.1 General Transportation Principles 4
 1.1.1 Transportation Brings Freedom to Citizens 4
 1.1.2 Transportation Enriches Society 5
 1.1.3 Transportation Improves Quality of Life 6
 1.1.4 Integration Is Key to Successful Transportation ... 6
 1.1.5 Networks Must be Designed for Peak
 Hour Capacity .. 7
 1.1.6 Transit Technologies are Competing
 with Each Other 8
 1.1.7 People Prefer Private Over Public Transport 8
 1.1.8 People Don’t Want to Reduce Their Lifestyle 8
 1.1.9 Not in My Backyard Syndrome 9
 1.2 An Increasingly Environmentally Conscious Society 10
 1.2.1 Greenhouse Gas Emission 10
 1.2.2 Air Pollution 11
 1.2.3 Investment in Clean Generation Technologies 12
 1.2.4 Investment in Clean Combustion Technologies 12
 1.2.5 Transport Modes Energy Comparison 13
 1.2.6 Economic Impact of Going Electric
 for Transportation 14
 1.3 Risk Adverse Society 15
 1.3.1 Graying of Society 16
 1.3.2 Litigation Society 16
 1.3.3 Safety Systems 17
 1.3.4 Mathematics and Algorithms 19
 1.3.5 Security .. 21
1.4 Mega Cities ... 22
 1.4.1 Massive Urbanization of Developing
 and Poor Countries 22
 1.4.2 Mega Transportation Problems of Megacities 24
 1.4.3 Increased Vehicle Capacity 25
 1.4.4 Increased Network Capacity 25
 1.4.5 Road Capacity 27
 1.4.6 Bus Rapid Transit (BRT) Capacity 28
 1.4.7 Mass Transit Capacity 29
 1.4.8 System Price Comparison 30
1.5 Connected Cities .. 30
 1.5.1 Constant Network Connection 31
 1.5.2 The “Internet of Things” 33
 1.5.3 M2M Communication 34
 1.5.4 M2M Applied to Cars 35
1.6 New Business Models 35
 1.6.1 Privatization 36
 1.6.2 Financing Transportation Projects 38
 1.6.3 Financial Instruments and Incentives 39
 1.6.4 Capturing Future Wealth Increase 40
 1.6.5 Mobile Advertising 41
 1.6.6 Geo-localization Advertising 41
 1.6.7 Portal of Choice 42
1.7 Changing the Face of Transportation 42
 1.7.1 Electrifying Transport 43
 1.7.2 Encouraging New Business Models 43
 1.7.3 Creating the Legal Framework for Unmanned
 Vehicles .. 45
 1.7.4 Barriers to Adoption 45

Companies and Brands Stated in the Chapter 46

2 Risk Adverse Society .. 49
 2.1 Introduction .. 50
 2.1.1 Graying of Society 51
 2.1.2 Society of Litigation 53
 2.1.3 Impact of These Trends on Transportation 53
 2.1.4 Safety Facts and Figures 54
 2.1.5 Security 60
 2.1.6 Homologation 62
 2.2 Safety Concepts .. 63
 2.2.1 Railway Safety Concepts 64
 2.2.2 Safety Procedures 66
 2.2.3 Interoperability 67
 2.2.4 WaySide Safety Technologies 67
2.8 The Advent of Vehicle-to-Vehicle Communication Technology

2.8.1 VANET

2.8.2 Wave Technology

2.8.3 CALM Technology

2.8.4 LTE Technology in VANET

2.8.5 Mesh Network Infrastructure

2.8.6 Vehicular Application

2.8.7 Anti-collision System

2.8.8 Accurate Geo-Positioning

2.8.9 V2V Operational Mode

2.9 Intelligent Wayside Technologies

2.9.1 Vehicle-to-Cloud (V2C)

2.9.2 Intelligent Parking

2.9.3 Intelligent Traffic Systems

2.9.4 Distributed Intelligence

2.10 Driverless Cars

2.10.1 Data Acquisition

2.10.2 Data Treatment

2.10.3 Financial Barrier to Adoption

2.10.4 Legal Barrier to Adoption

2.10.5 Legal Responsibilities

2.10.6 Vehicle Manufacturer Potential Liabilities

2.10.7 Onboard Signaling System Provider Potential Liabilities

2.10.8 Telecom Provider Potential Liabilities

2.10.9 V2C Hosting Centers

2.10.10 Road Infrastructure Provider

2.10.11 Operator or Car Owner

2.10.12 Suggestions to Minimize Legal Barrier to Adoption

2.10.13 Technical Suggestions to Minimize Potential Litigation

2.10.14 When Will It Happened?

2.10.15 Self-driving Market

2.10.16 Testing the Driverless Application

2.11 Security

2.11.1 E-Mobility Security Solution

2.11.2 End-to-End Security Solutions

2.11.3 Technological Trends in Security

2.11.4 Limitations of Analog Security Systems

2.11.5 IP Cameras

2.11.6 Integrated Audio

2.11.7 Compression Technology
2.11.8 Wayside IP CCTV Solutions
2.11.9 Integrated Security Event Management Systems
2.11.10 Total Integrated Public Transport System
2.11.11 Video Analytics
2.11.12 Distributed Intelligence
2.11.13 Video Analytics Limitations
2.11.14 Video Analytics Technologies
2.11.15 Security for Cars
2.11.16 Security for Cars

Company or Brand Names Stated in the Chapter

3 Environmentally Conscious Society
3.1 Governmental Environmentally Friendly Initiatives
3.1.1 Tax on Combustible
3.1.2 Carbon Tax
3.1.3 New Clean Air Regulation: California Clean Car Law
3.1.4 Internalization of External Costs
3.1.5 Incentive Measures: Tax Credit or Penalties
3.1.6 Congestion Charges
3.1.7 Public Transport Subsidies

3.2 Energy Consumption Comparison Between Car Technologies
3.2.1 Diesel, Gasoline, or Electric Cars
3.2.2 Comparable Measuring Units
3.2.3 Comparison at the Point of Energy Consumption
3.2.4 Electrical Car Consumption Study
3.2.5 Engine Efficiency
3.2.6 Braking Energy Recuperation
3.2.7 A Comparison Done at the Point of Energy Generation
3.2.8 Electric Power Generation and Distribution Efficiency
3.2.9 Petroleum-Equivalency Factor (PEF)
3.2.10 Well-to-Wheel Energy Comparison
3.2.11 Energy Efficiency According to the Energy Matrix
3.2.12 National Energy Savings Resulting from an All Electric Fleet

3.3 Evolution of the Electric Vehicle Market
3.3.1 Difference in Price at the Pump
3.3.2 Total Cost of Ownership
3.3.3 Battery Capacity
3.3.4 Battery Efficiency
3.3.5 Energy Charging Time
3.3.6 Charging Infrastructure
3.3.7 Trolleybus ... 189
3.3.8 Catenary-Free Buses 190

3.4 Energy Consumption Comparison Between Private
and Public Transport Means 191
3.4.1 Weight Comparison 193
3.4.2 Acceleration Force Comparison 194
3.4.3 Rolling Friction Force Comparison 194
3.4.4 Air Drag Force Comparison 196
3.4.5 Energy Consumption Comparison at Vehicle Level . 199
3.4.6 Power Comparison at Maximum Capacity 200
3.4.7 Energy Consumption Comparison with Real
Occupancy Rate .. 201
3.4.8 Train Energy Losses and Recuperation 205

3.5 Greener Technology 205
3.5.1 Silicon Carbide Inverter 205
3.5.2 Permanent Magnet (PM) Motor 207
3.5.3 Direct Drive Mechanism 208
3.5.4 Direct Drive with PM Motors Controlled
by SiC Inverters .. 208
3.5.5 Energy Recuperation and Wayside
or Onboard Storage 209

3.6 Final Energy Consumption Comparison 213

3.7 Pollution Comparison Between Car Technology 214
3.7.1 Air Pollution .. 216
3.7.2 Carbon Dioxide (CO₂) 217
3.7.3 Nitrogen Oxide: NOₓ 219
3.7.4 Nitrous Oxide: N₂O 219
3.7.5 Particulate Matter: PM₁₀ and PM₂.₅ 219
3.7.6 Volatile Organic Compound (VOC) 219
3.7.7 Health Impact of Pollution 220
3.7.8 Greenhouse Gas Effect 221
3.7.9 Wheel-to-Wheel Pollution of Different
Transport Modes .. 222
3.7.10 Well-to-Wheel Pollution of Different
Transport Modes ... 222
3.7.11 Electric Generation Matrix 226
3.7.12 Emission of CO₂ Per kWh 227
3.7.13 Emission of CO₂ Per Transportation Means 229
3.7.14 Conclusion About Pollutant Emission 229

3.8 Other Environmental Considerations 231
3.8.1 Battery Recycling 231
3.8.2 Enabling Renewable Energy Storage 232
3.8.3 Reduced Land Intake 233
3.8.4 City Integration 234
4 Avoiding Megacities’ Standstill

4.1 Private Transport Restriction Measures
 4.1.1 Congestion Charges
 4.1.2 Private Car Restriction
 4.1.3 Promoting Car Pooling and Financial Restrictions

4.2 System Capacity
 4.2.1 Holistic Approach to System Capacity
 4.2.2 Increasing Capacity of Existing Infrastructure
 4.2.3 Vehicle Capacity
 4.2.4 Maximum Number of Vehicles
 4.2.5 Average Speed
 4.2.6 Headway

4.3 Road Capacity with Drived Cars
 4.3.1 One-Lane Highway Intensity
 4.3.2 Level of Service (LOS)
 4.3.3 Highway Intensity
 4.3.4 Road Crossing and Intersection Lights Impact on Intensity
 4.3.5 Intelligent Lighting Systems
 4.3.6 Maximum and Real Road Capacity

4.4 Road Capacity with Unmanned Cars
 4.4.1 Highway Intensity with Uniform Spacing
 4.4.2 Highway Intensity with Nonuniform Spacing Design
 4.4.3 Platooning Policy

4.5 Car Pooling

4.6 Bus Capacity
 4.6.1 Loading Areas
 4.6.2 Bus Stops
 4.6.3 Bus Facilities
 4.6.4 Traffic Signal Timing
 4.6.5 Bus Capacity for One Loading Area
 4.6.6 Bus Capacity for Several Loading Areas
 4.6.7 Real Bus Capacity at Average Speed

4.7 Unmanned Bus Operation

4.8 Mass Transit Capacity
 4.8.1 Increasing Capacity of Existing Infrastructure
 4.8.2 Vehicle Capacity
 4.8.3 Mass Transit Network Capacity
 4.8.4 Railway System Capacity
4.9 Transport Mode Capacity Comparison.
 4.9.1 Highway and Road Capacity
 4.9.2 Bus and BRT Capacity
 4.9.3 Metro and Train Capacity
 4.9.4 Comparing Apples with Apples
 4.9.5 Considering Lost Capacity

4.10 System Price Comparison
 4.10.1 CAPEX Comparison
 4.10.2 OPEX Comparison
 4.10.3 Social and Environmental Costs
 4.10.4 Appropriation Costs
 4.10.5 Expropriation Costs
 4.10.6 Congestion Costs
 4.10.7 Environmental Costs
 4.10.8 Social Benefits
 4.10.9 Health Cost Linked to Air Pollution

4.11 Quality of Ride
 4.11.1 Average Speed
 4.11.2 Comfort
 4.11.3 Quality of Service
 4.11.4 Access to Information
 4.11.5 Transportation Modes’ Integration

5 Connected Cities
 5.1 Introduction
 5.1.1 The Mobile Environment
 5.1.2 Acquisition of Intelligent Thermostat Manufacturer
 5.2 The “Internet of Things” Technologies
 5.2.1 Internet Protocol Definition
 5.2.2 TCP/IP Layers
 5.2.3 Network Topology Description
 5.2.4 Service-Oriented Architecture (SOA)
 5.2.5 Service Delivery Platform (SDP) and Access Networking
 5.2.6 Next Generation Networks (NGN)
 5.2.7 Event-Driven Architecture (EDA)
 5.2.8 EDA and SOA Together
 5.2.9 Plug and Play Technology (PnP)
 5.3 M2M Communication
 5.3.1 Sensing Devices
 5.3.2 RFID
 5.3.3 Algorithms
5.3.4 Communication Links and Networks 300
5.3.5 Transportation Within the M2M Market 300
5.4 M2M Applied to Public Transport 301
 5.4.1 Railway Onboard Networks 301
 5.4.2 New IT Technologies that Affect Transportation 302
 5.4.3 Benefits of IP Networks Onboard Trains 303
 5.4.4 SOA Applied to the Railway Environment 304
 5.4.5 InteGRail ... 305
5.5 Predictive Maintenance ... 305
 5.5.1 Constant Monitoring .. 306
 5.5.2 Data Crunching ... 309
 5.5.3 Event-Driven Information 309
 5.5.4 Useful Algorithms ... 310
 5.5.5 Failure Criticality ... 310
 5.5.6 M2M Public Transport Market Estimation 310
5.6 M2M Applied to Cars .. 311
 5.6.1 Re-programmable SIM Cards 311
 5.6.2 Existing Onboard Car Networks 312
 5.6.3 Onboard Car IP Networks 312
 5.6.4 New M2M Added Value Services 313
 5.6.5 M2M Versus V2V or V2I 316
 5.6.6 M2M Private Transport Market Estimation 316
5.7 E-Mobility Technology Limitations 317
Companies and Brands Stated in the Chapter 318

6 New Transportation Business Models 319
 6.1 Project Finance .. 320
 6.1.1 Corporate Versus Project Finance 321
 6.1.2 Private Financial Players 322
 6.1.3 Private Participation in Transport Infrastructure 325
 6.2 Transport Infrastructure Privatizations 326
 6.2.1 Concession Agreement of Existing Transport Facilities 326
 6.2.2 New Project Concession 326
 6.2.3 Management Contract 327
 6.2.4 Private Public Partnerships (PPP) 328
 6.3 New Potential Financial Instruments and Incentives 328
 6.3.1 Green Bonds ... 328
 6.3.2 Carbon Credits ... 329
 6.3.3 Voluntary Carbon Market 330
 6.3.4 Corporate Donation and Tax Exemption 331
 6.3.5 Certificate of Potential Increase in Construction (CEPAC) 332
7 E-Mobility Likely Winners and Losers ... 367
 7.1 Who Can Ignore the E-Mobility Revolution? 367
 7.1.1 Flying Cars .. 368
 7.1.2 Trains and Hyperloops 369
 7.1.3 Can the E-Mobility Not Happen? 370
 7.2 E-Mobility Technology Adoption .. 371
 7.2.1 Railway Industry ... 371
 7.2.2 Automotive and Bus Industries 371
 7.2.3 Lack of Industry Standard 372
 7.2.4 Lack of Infrastructure 372
 7.2.5 Unmanned Car Technology Adoption Barriers 373
 7.2.6 Sensor Technology .. 373
 7.2.7 V2V and V2I Connectivity Solution 373
 7.2.8 Putting All Pieces Together 374
 7.2.9 Growing or Shrinking Market? 375
 7.2.10 Railway Signaling Business Model 377
 7.2.11 Smartphone Revolution 377
 7.2.12 Designer Model ... 378
 7.2.13 Licensing Model .. 379
 7.2.14 Service Model ... 379
 7.3 E-Mobility Likely Losers .. 380
 7.3.1 Parking Owners and Municipalities 380
 7.3.2 Car Manufacturers ... 381
 7.3.3 Body Shops .. 383
 7.3.4 Current PRT Manufacturers 383
 7.3.5 Steel Companies ... 383
 7.3.6 Light Rail Vehicle .. 383
 7.3.7 Conventional Bus Operation 383
 7.3.8 Conventional Car Rental Industry 384
 7.3.9 Fossil Fuel Industry .. 384
 7.3.10 Health Sector ... 384
 7.3.11 Personal-Injury Lawyers 385
 7.4 E-Mobility Likely Winners .. 385
 7.4.1 Electric Car Manufacturers 385
 7.4.2 Environment .. 385
 7.4.3 Insurers .. 386
 7.4.4 Government Authorities 387
 7.4.5 Software Providers .. 387
 7.4.6 System Integration Providers 389
 7.4.7 Road Infrastructure Providers 389
 7.4.8 Electrical Infrastructure Providers 390
 7.4.9 Society ... 390

Companies and Brands Stated in the Chapter 391
The Advent of Unmanned Electric Vehicles
The Choices between E-mobility and Immobility
Van Themsche, S.
2016, XIX, 392 p., Hardcover
ISBN: 978-3-319-20665-3