1.4 Mega Cities
1.4.1 Massive Urbanization of Developing and Poor Countries
1.4.2 Mega Transportation Problems of Megacities
1.4.3 Increased Vehicle Capacity
1.4.4 Increased Network Capacity
1.4.5 Road Capacity
1.4.6 Bus Rapid Transit (BRT) Capacity
1.4.7 Mass Transit Capacity
1.4.8 System Price Comparison
1.5 Connected Cities
1.5.1 Constant Network Connection
1.5.2 The “Internet of Things”
1.5.3 M2M Communication
1.5.4 M2M Applied to Cars
1.6 New Business Models
1.6.1 Privatization
1.6.2 Financing Transportation Projects
1.6.3 Financial Instruments and Incentives
1.6.4 Capturing Future Wealth Increase
1.6.5 Mobile Advertising
1.6.6 Geo-localization Advertising
1.6.7 Portal of Choice
1.7 Changing the Face of Transportation
1.7.1 Electrifying Transport
1.7.2 Encouraging New Business Models
1.7.3 Creating the Legal Framework for Unmanned Vehicles
1.7.4 Barriers to Adoption

Companies and Brands Stated in the Chapter.

2 Risk Adverse Society
2.1 Introduction
2.1.1 Graying of Society
2.1.2 Society of Litigation
2.1.3 Impact of These Trends on Transportation
2.1.4 Safety Facts and Figures
2.1.5 Security
2.1.6 Homologation
2.2 Safety Concepts
2.2.1 Railway Safety Concepts
2.2.2 Safety Procedures
2.2.3 Interoperability
2.2.4 WaySide Safety Technologies
2.8 The Advent of Vehicle-to-Vehicle Communication
2.8.1 VANET 114
2.8.2 Wave Technology 115
2.8.3 CALM Technology 115
2.8.4 LTE Technology in VANET 116
2.8.5 Mesh Network Infrastructure 116
2.8.6 Vehicular Application 118
2.8.7 Anti-collision System 118
2.8.8 Accurate Geo-Positioning 119
2.8.9 V2V Operational Mode 121

2.9 Intelligent Wayside Technologies 122
2.9.1 Vehicle-to-Cloud (V2C) 122
2.9.2 Intelligent Parking 123
2.9.3 Intelligent Traffic Systems 123
2.9.4 Distributed Intelligence 124

2.10 Driverless Cars 125
2.10.1 Data Acquisition 125
2.10.2 Data Treatment 126
2.10.3 Financial Barrier to Adoption 128
2.10.4 Legal Barrier to Adoption 129
2.10.5 Legal Responsibilities 130
2.10.6 Vehicle Manufacturer Potential Liabilities 131
2.10.7 Onboard Signaling System Provider Potential Liabilities 131
2.10.8 Telecom Provider Potential Liabilities 132
2.10.9 V2C Hosting Centers 133
2.10.10 Road Infrastructure Provider ... 133
2.10.11 Operator or Car Owner 133
2.10.12 Suggestions to Minimize Legal Barrier to Adoption 134
2.10.13 Technical Suggestions to Minimize Potential Litigation 136
2.10.14 When Will It Happened? 137
2.10.15 Self-driving Market 139
2.10.16 Testing the Driverless Application 141

2.11 Security 141
2.11.1 E-Mobility Security Solution 142
2.11.2 End-to-End Security Solutions 143
2.11.3 Technological Trends in Security 143
2.11.4 Limitations of Analog Security Systems 145
2.11.5 IP Cameras 145
2.11.6 Integrated Audio 146
2.11.7 Compression Technology 146
3 Environmentally Conscious Society .. 157
3.1 Governmental Environmentally Friendly Initiatives 159
 3.1.1 Tax on Combustible .. 160
 3.1.2 Carbon Tax ... 162
 3.1.3 New Clean Air Regulation: California Clean Car Law 162
 3.1.4 Internalization of External Costs ... 163
 3.1.5 Incentive Measures: Tax Credit or Penalties 163
 3.1.6 Congestion Charges ... 164
 3.1.7 Public Transport Subsidies ... 164
3.2 Energy Consumption Comparison Between Car Technologies 165
 3.2.1 Diesel, Gasoline, or Electric Cars .. 165
 3.2.2 Comparable Measuring Units .. 165
 3.2.3 Comparison at the Point of Energy Consumption 166
 3.2.4 Electrical Car Consumption Study .. 167
 3.2.5 Engine Efficiency .. 169
 3.2.6 Braking Energy Recuperation .. 170
 3.2.7 A Comparison Done at the Point of Energy Generation 174
 3.2.8 Electric Power Generation and Distribution Efficiency 174
 3.2.9 Petroleum-Equivalency Factor (PEF) 176
 3.2.10 Well-to-Wheel Energy Comparison 176
 3.2.11 Energy Efficiency According to the Energy Matrix 178
 3.2.12 National Energy Savings Resulting from an All Electric Fleet 181
3.3 Evolution of the Electric Vehicle Market ... 181
 3.3.1 Difference in Price at the Pump .. 182
 3.3.2 Total Cost of Ownership .. 183
 3.3.3 Battery Capacity .. 184
 3.3.4 Battery Efficiency .. 185
 3.3.5 Energy Charging Time ... 186
 3.3.6 Charging Infrastructure .. 188
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7</td>
<td>Trolleybus</td>
<td>189</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Catenary-Free Buses</td>
<td>190</td>
</tr>
<tr>
<td>3.4</td>
<td>Energy Consumption Comparison Between Private and Public Transport Means</td>
<td>191</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Weight Comparison</td>
<td>193</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Acceleration Force Comparison</td>
<td>194</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Rolling Friction Force Comparison</td>
<td>194</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Air Drag Force Comparison</td>
<td>196</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Energy Consumption Comparison at Vehicle Level</td>
<td>199</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Power Comparison at Maximum Capacity</td>
<td>200</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Energy Consumption Comparison with Real Occupancy Rate</td>
<td>201</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Train Energy Losses and Recuperation</td>
<td>205</td>
</tr>
<tr>
<td>3.5</td>
<td>Greener Technology</td>
<td>205</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Silicon Carbide Inverter</td>
<td>205</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Permanent Magnet (PM) Motor</td>
<td>207</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Direct Drive Mechanism</td>
<td>208</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Direct Drive with PM Motors Controlled by SiC Inverters</td>
<td>208</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Energy Recuperation and Wayside or Onboard Storage</td>
<td>209</td>
</tr>
<tr>
<td>3.6</td>
<td>Final Energy Consumption Comparison</td>
<td>213</td>
</tr>
<tr>
<td>3.7</td>
<td>Pollution Comparison Between Car Technology</td>
<td>214</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Air Pollution</td>
<td>216</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Carbon Dioxide (CO$_2$)</td>
<td>217</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Nitrogen Oxide: NO$_x$</td>
<td>219</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Nitrous Oxide: N$_2$O</td>
<td>219</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Particulate Matter: PM${10}$ and PM${2.5}$</td>
<td>219</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Volatile Organic Compound (VOC)</td>
<td>219</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Health Impact of Pollution</td>
<td>220</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Greenhouse Gas Effect</td>
<td>221</td>
</tr>
<tr>
<td>3.7.9</td>
<td>Wheel-to-Wheel Pollution of Different Transport Modes</td>
<td>222</td>
</tr>
<tr>
<td>3.7.10</td>
<td>Well-to-Wheel Pollution of Different Transport Modes</td>
<td>222</td>
</tr>
<tr>
<td>3.7.11</td>
<td>Electric Generation Matrix</td>
<td>226</td>
</tr>
<tr>
<td>3.7.12</td>
<td>Emission of CO$_2$ Per kWh</td>
<td>227</td>
</tr>
<tr>
<td>3.7.13</td>
<td>Emission of CO$_2$ Per Transportation Means</td>
<td>229</td>
</tr>
<tr>
<td>3.7.14</td>
<td>Conclusion About Pollutant Emission</td>
<td>229</td>
</tr>
<tr>
<td>3.8</td>
<td>Other Environmental Considerations</td>
<td>231</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Battery Recycling</td>
<td>231</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Enabling Renewable Energy Storage</td>
<td>232</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Reduced Land Intake</td>
<td>233</td>
</tr>
<tr>
<td>3.8.4</td>
<td>City Integration</td>
<td>234</td>
</tr>
</tbody>
</table>
3.8.5 Noise Pollution ... 235
3.8.6 Vibration .. 236

Companies and Brands Stated in the Chapter 236

4 Avoiding Megacities’ Standstill .. 237

4.1 Private Transport Restriction Measures 238
 4.1.1 Congestion Charges .. 238
 4.1.2 Private Car Restriction 239
 4.1.3 Promoting Car Pooling and Financial Restrictions 240

4.2 System Capacity .. 240
 4.2.1 Holistic Approach to System Capacity 240
 4.2.2 Increasing Capacity of Existing Infrastructure 241
 4.2.3 Vehicle Capacity ... 241
 4.2.4 Maximum Number of Vehicles 242
 4.2.5 Average Speed .. 242
 4.2.6 Headway .. 243

4.3 Road Capacity with Drived Cars 243
 4.3.1 One-Lane Highway Intensity 244
 4.3.2 Level of Service (LOS) 245
 4.3.3 Highway Intensity ... 247
 4.3.4 Road Crossing and Intersection Lights Impact on Intensity .. 248
 4.3.5 Intelligent Lighting Systems 249
 4.3.6 Maximum and Real Road Capacity 250

4.4 Road Capacity with Unmanned Cars 250
 4.4.1 Highway Intensity with Uniform Spacing 251
 4.4.2 Highway Intensity with Nonuniform Spacing Design .. 252
 4.4.3 Platooning Policy ... 252

4.5 Car Pooling ... 254

4.6 Bus Capacity ... 254
 4.6.1 Loading Areas ... 255
 4.6.2 Bus Stops .. 257
 4.6.3 Bus Facilities .. 258
 4.6.4 Traffic Signal Timing 258
 4.6.5 Bus Capacity for One Loading Area 258
 4.6.6 Bus Capacity for Several Loading Areas 259
 4.6.7 Real Bus Capacity at Average Speed 260

4.7 Unmanned Bus Operation .. 261

4.8 Mass Transit Capacity ... 263
 4.8.1 Increasing Capacity of Existing Infrastructure 263
 4.8.2 Vehicle Capacity .. 263
 4.8.3 Mass Transit Network Capacity 266
 4.8.4 Railway System Capacity 266
4.9 Transport Mode Capacity Comparison

4.9.1 Highway and Road Capacity
4.9.2 Bus and BRT Capacity
4.9.3 Metro and Train Capacity
4.9.4 Comparing Apples with Apples
4.9.5 Considering Lost Capacity

4.10 System Price Comparison

4.10.1 CAPEX Comparison
4.10.2 OPEX Comparison
4.10.3 Social and Environmental Costs
4.10.4 Appropriation Costs
4.10.5 Expropriation Costs
4.10.6 Congestion Costs
4.10.7 Environmental Costs
4.10.8 Social Benefits
4.10.9 Health Cost Linked to Air Pollution

4.11 Quality of Ride

4.11.1 Average Speed
4.11.2 Comfort
4.11.3 Quality of Service
4.11.4 Access to Information
4.11.5 Transportation Modes’ Integration

5 Connected Cities

5.1 Introduction
5.1.1 The Mobile Environment
5.1.2 Acquisition of Intelligent Thermostat Manufacturer

5.2 The “Internet of Things” Technologies

5.2.1 Internet Protocol Definition
5.2.2 TCP/IP Layers
5.2.3 Network Topology Description
5.2.4 Service-Oriented Architecture (SOA)
5.2.5 Service Delivery Platform (SDP) and Access Networking
5.2.6 Next Generation Networks (NGN)
5.2.7 Event-Driven Architecture (EDA)
5.2.8 EDA and SOA Together
5.2.9 Plug and Play Technology (PnP)

5.3 M2M Communication

5.3.1 Sensing Devices
5.3.2 RFID
5.3.3 Algorithms
6.4 Reducing Infrastructure Construction Needs

6.4.1 Encourage Working from Home

6.4.2 Encourage People to Stay in Their Neighborhood

6.4.3 Higher Occupancy Rate

6.4.4 Higher Transportation Means Density

6.4.5 Car and Parking Space Reduction

6.5 Electrifying Transport

6.6 Changing Public Transport Business Model

6.6.1 Total Cost of Ownership (TCO)

6.7 Private to Public Transport Cross-Subsidizing

6.7.1 Fast Lane Cross-Subsidizing

6.7.2 Localized Congestion Charges

6.8 Internet Connectivity

6.8.1 Pay-Per-Click Model (PPC)

6.8.2 Time Spent Online

6.8.3 Mobile Shopping

6.8.4 Mobile Activities

6.8.5 Generation Gap

6.8.6 Mobile Advertising Market Estimation

6.9 Transport Information Supplier of Choice

6.9.1 Public Transport Information System

6.9.2 Battle for Passenger Information Access

6.9.3 Social Public Transport Apps

6.9.4 GPS Location-Based Information

6.9.5 Beacon Location Based Information

6.9.6 Legal Use of Geo-tagging Space

6.9.7 Cross-Subsidies of Mobile Advertising Revenues

6.9.8 Road Transport Information System

6.10 E-mobility Software Applications

6.10.1 Social Car Apps

6.10.2 Car Pooling Apps

6.10.3 Car Sharing Initiatives and Apps

6.10.4 Mobile Taxi Hailing Apps

6.11 Change of Car Ownership Business Model

6.11.1 Car’s Negative Image

6.11.2 Commoditization of Cars

6.11.3 Blurring Differences Between Private and Public Transport

6.11.4 Car Ownership Models

6.12 Change of “Public Service Car” Business Models

6.12.1 Conventional Taxi Business Model

6.12.2 New Taxi Hailing Business Model

6.12.3 The End of Taxi Drivers

Companies and Brands Stated in the Chapter
7 E-Mobility Likely Winners and Losers .. 367
7.1 Who Can Ignore the E-Mobility Revolution? 367
 7.1.1 Flying Cars .. 368
 7.1.2 Trains and Hyperloops 369
 7.1.3 Can the E-Mobility Not Happen? 370
7.2 E-Mobility Technology Adoption .. 371
 7.2.1 Railway Industry .. 371
 7.2.2 Automotive and Bus Industries 371
 7.2.3 Lack of Industry Standard 372
 7.2.4 Lack of Infrastructure 372
 7.2.5 Unmanned Car Technology Adoption Barriers 373
 7.2.6 Sensor Technology .. 373
 7.2.7 V2V and V2I Connectivity Solution 373
 7.2.8 Putting All Pieces Together 374
 7.2.9 Growing or Shrinking Market? 375
 7.2.10 Railway Signaling Business Model 377
 7.2.11 Smartphone Revolution 377
 7.2.12 Designer Model .. 378
 7.2.13 Licensing Model ... 379
 7.2.14 Service Model .. 379
7.3 E-Mobility Likely Losers .. 380
 7.3.1 Parking Owners and Municipalities 380
 7.3.2 Car Manufacturers ... 381
 7.3.3 Body Shops .. 383
 7.3.4 Current PRT Manufacturers 383
 7.3.5 Steel Companies ... 383
 7.3.6 Light Rail Vehicle .. 383
 7.3.7 Conventional Bus Operation 383
 7.3.8 Conventional Car Rental Industry 384
 7.3.9 Fossil Fuel Industry .. 384
 7.3.10 Health Sector .. 384
 7.3.11 Personal-Injury Lawyers 385
7.4 E-Mobility Likely Winners .. 385
 7.4.1 Electric Car Manufacturers 385
 7.4.2 Environment .. 385
 7.4.3 Insurers .. 386
 7.4.4 Government Authorities .. 387
 7.4.5 Software Providers .. 387
 7.4.6 System Integration Providers 389
 7.4.7 Road Infrastructure Providers 389
 7.4.8 Electrical Infrastructure Providers 390
 7.4.9 Society .. 390
Companies and Brands Stated in the Chapter 391
The Advent of Unmanned Electric Vehicles
The Choices between E-mobility and Immobility
Van Themscne, S.
2016, XIX, 392 p., Hardcover
ISBN: 978-3-319-20665-3