Contents

1 From Complex to Spatial Networks .. 1
1.1 Early Days .. 1
1.2 Complex Networks .. 2
1.3 Space Matters .. 3
1.4 Definition and Representations 3
 1.4.1 Spatial Networks 3
 1.4.2 Representations of Networks 4
1.5 Planar Graphs .. 6
 1.5.1 Planarity and Crossing Number 8
 1.5.2 Basic Results 10

2 Irrelevant and Simple Measures .. 13
2.1 Irrelevant Measures .. 13
 2.1.1 Degree ... 14
 2.1.2 Length of Segments 16
 2.1.3 Clustering, Assortativity, and Average Shortest Path 17
 2.1.4 Empirical Illustrations 21
2.2 Simple Measures ... 28
 2.2.1 Topological Indices: x and y Indices 28
 2.2.2 Organic Ratio and Ringness 29
 2.2.3 Cell Areas and Shape 30
 2.2.4 Route Factor, Detour Index 31
 2.2.5 Cost, Efficiency, and Robustness 32

3 Statistics of Faces and Typology of Planar Graphs 35
3.1 Area and Shape of Faces 35
 3.1.1 Characterizing Blocks 36
 3.1.2 A Typology of Planar Graphs 39
3.2 Approximate Mapping of a Planar Graph to a Tree 42
3.3 An Exact Bijection Between a Planar Graph and a Tree 48
4 Betweenness Centrality 51
4.1 Definition of the BC 51
4.2 General Properties 52
 4.2.1 Numerical Calculation: Brandes’ Algorithm 52
 4.2.2 The Average BC 53
 4.2.3 Edge Versus Node BC 54
 4.2.4 Adding Edges 55
 4.2.5 Scaling of the Maximum BC 57
4.3 The Spatial Distribution of Betweenness Centrality 59
 4.3.1 Regular Lattice and Scale-Free Networks 59
 4.3.2 Giant Percolation Cluster 60
 4.3.3 Real-World Planar Graphs 61
 4.3.4 Summary: Stylized Facts 66
4.4 The BC of a Loop Versus the Center: A Toy Model 67
 4.4.1 Approximate Formulas 68
 4.4.2 A Transition to a Central Loop 69
4.5 The BC in a Disk: The Continuous Limit 71
5 Simplicity and Entropy 75
5.1 Simplicity 75
 5.1.1 Simplest Paths 75
 5.1.2 The Simplicity Index and the Simplicity Profile 77
 5.1.3 A Null Model 79
 5.1.4 Measures on Real-World Networks 81
5.2 Information Perspective 84
 5.2.1 Entropy and Simplest Paths 84
 5.2.2 Navigating in the City 86
 5.2.3 Quantifying the Complexity 87
6 Spatial Dominance and Community Detection 93
6.1 Spatial Dominance 93
6.2 Community Detection in Spatial Networks 97
 6.2.1 Modularity 99
 6.2.2 A Null Model for Spatial Networks with Attributes 100
 6.2.3 Synthetic Spatial Network Benchmarks 105
 6.2.4 Modifying the Modularity 105
7 Measuring the Time Evolution of Spatial Networks 111
7.1 Road Networks 112
 7.1.1 Organic Growth 112
 7.1.2 Effect of Planning 120
 7.1.3 Simplicity Measures 130
7.2 Subways ... 132
 7.2.1 Generalities 133
 7.2.2 Network Evolution 136
7.2.3 Standard Measures ... 138
7.2.4 Efficiency .. 139
7.2.5 Temporal Statistics: Bursts 141
7.2.6 Core and Branches: Measures and Model 143
7.2.7 Spatial Organization of the Core and Branches 152

8 Tessellations of the Plane 157
 8.1 The Voronoi Tessellation 157
 8.1.1 The Delaunay Graph 159
 8.1.2 Average Properties of the Poisson-Voronoi
 Tessellation ... 160
 8.1.3 Cell Area Probability Distribution 162
 8.1.4 Probability Distribution of the Number of Sides
 and the Perimeter 164
 8.1.5 Central Limit Theorems 166
 8.2 Effect of the Density of Points 167
 8.3 Crack and STIT Tessellations 169
 8.4 Planar Fragmentation 171
 8.5 A Null Model for Spatial Multilayer Networks 173

9 Random Geometric Graphs 177
 9.1 The Hard Case .. 178
 9.1.1 Degree Distribution 178
 9.1.2 The Clustering Coefficient 179
 9.1.3 Calculation of the Giant Component 181
 9.2 Soft Random Geometric Graphs 183
 9.2.1 The Full Connectivity Probability 183
 9.3 Bluetooth and Gabriel Graphs 186
 9.3.1 Bluetooth Graph 186
 9.3.2 Gabriel Graph .. 186
 9.4 The k-nearest Neighbor Model 188
 9.4.1 Definition and Connectivity Properties 188
 9.4.2 A Scale-Free Network on a Lattice 189
 9.5 A Dynamical Model ... 191
 9.5.1 Definition ... 191
 9.5.2 Stationary State .. 192
 9.5.3 Percolation Properties 192
 9.5.4 Degree Distribution 193
 9.6 Other Variants .. 194
 9.6.1 Random Geometric Graphs in Hyperbolic Space 194
 9.6.2 Apollonian Networks 195

10 Spatial Generalizations of Random Graphs 197
 10.1 Spatial Version of Erdos–Renyi Graphs 197
 10.1.1 The Erdos–Renyi Graph 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2</td>
<td>Random Planar Graphs</td>
<td>198</td>
</tr>
<tr>
<td>10.2</td>
<td>The Hidden Variable Model for Spatial Networks</td>
<td>200</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Spatial Case</td>
<td>200</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Effect of Traffic</td>
<td>201</td>
</tr>
<tr>
<td>10.2.3</td>
<td>The Waxman Model</td>
<td>203</td>
</tr>
<tr>
<td>10.3</td>
<td>Spatial Small Worlds</td>
<td>206</td>
</tr>
<tr>
<td>10.3.1</td>
<td>The Watts–Strogatz Model</td>
<td>206</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Spatial Generalizations in Dimension d</td>
<td>207</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Percolation in Small Worlds</td>
<td>210</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Navigability in the Kleinberg Model</td>
<td>213</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Searching in Spatial Scale-Free Networks</td>
<td>218</td>
</tr>
<tr>
<td>11</td>
<td>Loops and Branches</td>
<td>221</td>
</tr>
<tr>
<td>11.1</td>
<td>Reducing the Complexity of a Spatial Network</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>A Loop and Branches Toy Model</td>
<td>224</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Exact and Approximate Formulas</td>
<td>225</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Threshold Value of w and Optimal ℓ</td>
<td>229</td>
</tr>
<tr>
<td>11.3</td>
<td>Analyzing the Impact of Congestion Cost</td>
<td>233</td>
</tr>
<tr>
<td>11.3.1</td>
<td>An Exactly Solvable Hub-and-Spoke Model</td>
<td>235</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Congestion and Centralized Organization</td>
<td>238</td>
</tr>
<tr>
<td>12</td>
<td>Optimal Networks</td>
<td>241</td>
</tr>
<tr>
<td>12.1</td>
<td>Optimization, Complexity, and Efficiency</td>
<td>241</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Complexity</td>
<td>241</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Efficiency of Transport Network</td>
<td>242</td>
</tr>
<tr>
<td>12.2</td>
<td>Minimum Spanning Tree</td>
<td>244</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Minimum Spanning Tree on a Complete Graph</td>
<td>245</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Euclidean Minimum Spanning Tree</td>
<td>247</td>
</tr>
<tr>
<td>12.3</td>
<td>Optimal Trees: Generalization</td>
<td>253</td>
</tr>
<tr>
<td>12.4</td>
<td>Beyond Optimal Trees: Noise and Loops</td>
<td>258</td>
</tr>
<tr>
<td>12.5</td>
<td>Hub-and-Spoke Structure</td>
<td>261</td>
</tr>
<tr>
<td>13</td>
<td>Models of Network Growth</td>
<td>265</td>
</tr>
<tr>
<td>13.1</td>
<td>Preferential Attachment and Space</td>
<td>265</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Preferential Attachment and Distance Selection</td>
<td>267</td>
</tr>
<tr>
<td>13.2</td>
<td>Attraction Potential Models</td>
<td>274</td>
</tr>
<tr>
<td>13.2.1</td>
<td>The Connection Rule</td>
<td>275</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Uniform Distribution of Nodes</td>
<td>276</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Exponential Distribution of Centers</td>
<td>277</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Effect of Centrality and Density</td>
<td>279</td>
</tr>
<tr>
<td>13.2.5</td>
<td>The Appearance of Core Districts</td>
<td>285</td>
</tr>
<tr>
<td>14</td>
<td>Greedy Models</td>
<td>287</td>
</tr>
<tr>
<td>14.1</td>
<td>A Model for Distribution Networks</td>
<td>288</td>
</tr>
<tr>
<td>14.2</td>
<td>Cost-Benefit Analysis</td>
<td>290</td>
</tr>
</tbody>
</table>
14.2.1 Theoretical Formulation .. 291
14.2.2 Crossover Between the Star Graph and the MST 292
14.2.3 Spatial Hierarchy and Scaling 295
14.2.4 Understanding the Scaling with a Toy Model 299
14.2.5 Efficiency ... 300
14.2.6 The Model and Real-World Railways 304

14.3 Cost-Benefit Analysis: General Scaling Theory 304
14.3.1 Theoretical Framework 305
14.3.2 Subways .. 306
14.3.3 Railways ... 310

15 Discussion and Future Directions 315

References ... 319
Index ... 329