Contents

Translator’s Introduction: Chladni and the State of Acoustics in 1800 .. xvii

Author’s Preface .. xxvii

Preliminary Observations 1
 1. Explanation of the Words Sound and Noise 1
 2. Subjects of Acoustics 2

Part I Numerical Ratios of Vibrations

Section 1: Primary Ratios 5
 3. Grave and Acute Tones 5
 4. Explanation of the Words Interval, Melody, Chord, Harmony, etc. 5
 5. Absolute Frequency of the Vibrations of Each Tone 6
 6. Difference of Consonant and Dissonant Intervals 8
 7. Unison and the Octave 9
 8. Other Consonant Intervals 9
 9. Consonant Chords 10
 10. Dissonant Chords 11
 11. Ordinary Scale ... 11
 12. Intervals .. 12
 13. Some Other Intervals 13
 14. Diatonic, Chromatic, and Enharmonic Progressions 13
 15. Scales of Different Tones 14
 16. Scale of the Minor Mode 15
 17. Explanation of Several Words 16
 18. Progressions from One Chord to Another 16
 19. Relative Frequencies of Sounds Contained in an Octave ... 17
 20. Several Other Intervals Contained in the Natural Series of Numbers .. 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.</td>
<td>Reinforcement of the Sound of the Air by the Resonance of a Membrane</td>
<td>44</td>
</tr>
<tr>
<td>52.</td>
<td>Voices of Humans and Animals</td>
<td>44</td>
</tr>
<tr>
<td>53.</td>
<td>Differences in Pipes</td>
<td>46</td>
</tr>
<tr>
<td>54.</td>
<td>Reed Stops</td>
<td>47</td>
</tr>
<tr>
<td>55.</td>
<td>Flue Pipes</td>
<td>47</td>
</tr>
<tr>
<td>56.</td>
<td>Kinds of Pipes</td>
<td>48</td>
</tr>
<tr>
<td>57.</td>
<td>Explanation of the Manner in Which Vibrations Are Made</td>
<td>49</td>
</tr>
<tr>
<td>58.</td>
<td>The Difference Between Simple and Double Parts</td>
<td>49</td>
</tr>
<tr>
<td>59.</td>
<td>Simplest Motion of Air in a Closed Pipe</td>
<td>50</td>
</tr>
<tr>
<td>60.</td>
<td>Simplest Motion of Air in an Open Pipe</td>
<td>50</td>
</tr>
<tr>
<td>61.</td>
<td>Other Motions of Air in Closed and Open Pipes</td>
<td>50</td>
</tr>
<tr>
<td>62.</td>
<td>Ratios of Sounds Equal to the Natural Series of Numbers</td>
<td>51</td>
</tr>
<tr>
<td>63.</td>
<td>The Shape of the Pipe Is Unimportant</td>
<td>51</td>
</tr>
<tr>
<td>64.</td>
<td>Laws of Sound</td>
<td>52</td>
</tr>
<tr>
<td>65.</td>
<td>Authors Consulted</td>
<td>53</td>
</tr>
<tr>
<td>66.</td>
<td>Sound Produced by the Combustion of Hydrogen Gas in a Tube</td>
<td>53</td>
</tr>
<tr>
<td>67.</td>
<td>Sounds of Different Kinds of Gases</td>
<td>54</td>
</tr>
<tr>
<td>Section 5: Vibrations of a Rod or a Straight Strip</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>A.</td>
<td>Transverse Vibrations</td>
<td>57</td>
</tr>
<tr>
<td>68.</td>
<td>Different Cases</td>
<td>57</td>
</tr>
<tr>
<td>69–74.</td>
<td>Vibrations of a Rod, One or Both Ends of Which Are Fixed, Supported, or Free</td>
<td>58</td>
</tr>
<tr>
<td>75.</td>
<td>Laws of These Vibrations</td>
<td>61</td>
</tr>
<tr>
<td>76.</td>
<td>Authors Consulted</td>
<td>62</td>
</tr>
<tr>
<td>B.</td>
<td>Longitudinal Vibrations</td>
<td>62</td>
</tr>
<tr>
<td>77.</td>
<td>Explanations</td>
<td>62</td>
</tr>
<tr>
<td>78.</td>
<td>Manner of Making the Experiments</td>
<td>63</td>
</tr>
<tr>
<td>79–81.</td>
<td>Different Cases</td>
<td>63</td>
</tr>
<tr>
<td>82.</td>
<td>Relative Frequencies of Vibrations of Different Materials</td>
<td>64</td>
</tr>
<tr>
<td>83.</td>
<td>Laws of These Vibrations, Compared with Those of Transverse Vibrations</td>
<td>66</td>
</tr>
<tr>
<td>C.</td>
<td>Torsional Vibrations of a Rod</td>
<td>66</td>
</tr>
<tr>
<td>84.</td>
<td>Explanation of These Vibrations</td>
<td>66</td>
</tr>
<tr>
<td>85.</td>
<td>Manner of Their Production</td>
<td>67</td>
</tr>
<tr>
<td>86.</td>
<td>Laws</td>
<td>67</td>
</tr>
<tr>
<td>87.</td>
<td>Application of These Vibrations to Those of a Plate</td>
<td>67</td>
</tr>
<tr>
<td>Section 6: Vibrations of a Bent Rod</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>88.</td>
<td>Vibrations of Forks</td>
<td>69</td>
</tr>
<tr>
<td>89.</td>
<td>Vibrations of Rings</td>
<td>70</td>
</tr>
<tr>
<td>90.</td>
<td>Vibrations of Other Curved Rods</td>
<td>71</td>
</tr>
</tbody>
</table>
Section 7: Vibrations of Plates

A. General Remarks
91. Explanation
92. Manner of Performing the Experiments
93. Several General Attributes of These Vibrations
94. Direction of the Nodal Lines
95. Distortions of the Figures
96. Affinities of the Figures Among Themselves
97. General Laws of the Frequency of Vibrations
98. Several Lessons for Those Who Wish to Be Concerned with the Theory of Oscillations

B. Vibrations of Rectangular Plates in General
100. Vibrations of a Rectangular Plate Whose Two Ends Are Free
101. Vibrations of a Rectangular Plate with One End Fixed and the Other Free
102. Vibrations of a Rectangular Plate with Two Ends Fixed

C. Vibrations of a Square Plate and Some Other Kinds of Rectangular Plates
103. Explanation
104. Nodal lines in One Direction or Another and Signs for Expressing Them
105. Flexions of Nodal Lines
106. The Essential Difference When the Nodal Lines Are Curved Inward and Outward
107. Types of Vibrations of a Square Plate
108. Ratios of the Sounds
109. Several Other Kinds of Vibrations in Which the Plate is Not Free
110. Different Patterns That Are Formed When the Plate is Not Free
111. Symbols for Expressing the Vibrations of Rectangular Plates
112. Passages of One Figure to Another, When the Sound Is the Same
113–123. Sounds of Rectangular Plates with Different Ratios of Their Dimensions, Regarding the Length as Constant and the Width as Variable
124. Summary of the Research on the Vibration of Rectangular Plates

D. Vibrations of a Round Plate
125. Nodal Lines in Diametral and Circular Directions, and Symbols for Expressing Them
126. Vibrations in Which There Are Only Diametral Lines
127. Vibrations That Present a Circular Line
128. Vibrations in Which There Are Two or More Circular Lines
129. The Bending of Circular Lines
130. Ratio of Sounds of a Round Plate
131. Some Other Types of Vibrations in Which the Plate Is Not Free
E. Vibrations of Elliptical Plates 105
132. General Remarks ... 105
133. Manner of Producing Different Kinds of Vibrations 107
134. Passages of the Figures of a Round Plate to Those of an Elliptical Plate .. 107
135. Some Particularly Remarkable Ratios of Axes 108
136–146. Vibrations of Elliptical Plates in Different Ratios of Axes, Regarding One Axis as a Constant and the Other as a Variable ... 109
147. Summary of Research on Elliptical Plates 116
F. Vibrations of Hexagonal Plates 117
148. They Differ Little from Those of a Round Plate 117
149. Figures and Ratios of the Sounds 118
G. Vibrations of Semicircular Plates 119
150. The figures Are Half Those of a Round Plate 119
151. Ratios of the Sounds ... 119
152. Vibrations of Plates That Are a Small Part of a Round Plate . 120
H. Vibrations of Triangular and Other Plates 120
153. Vibrations and Sounds of an Equilateral Triangular Plate 120
154. Compositions and Portions of Figures That Can be Produced on Several Other Plates 121
I. Remarks on Some Practical Usage of Plates 122
155. On Two Chinese Instruments 122

Section 8: Vibrations of Bells and Vessels 123
156. General Remarks ... 123
157. Manner of Producing Vibrations and Making Them Visible 123
158. The Fundamental Sound of a Bell 124
159. Application to a Harmonica Bell 124
160. In Irregular Bells the Sound Is Not the Same Everywhere 124
161. Other Types of Vibrations 125
162. Laws for the Absolute Frequency of Vibrations 126
163. The Vibrations of Sounding Bodies of Other Shapes Are Still Not Known .. 126

Section 9: On the Coexistence of Several Modes of Vibration in the Same Sounding Body .. 127
164. Several Vibrations Can Coexist 127
165–170. Coexistence of Several Vibrations in a Single String ... 127
171. Coexistence of Several Vibrations in an Organ Pipe 130
172. Coexistence of Several Vibrations in a Rod 130
173. Coexistence of Several Vibrations in a Fork or a Ring 130
174. Coexistence of Several Vibrations in a Plate 131
175. Coexistence of Several Vibrations in a Bell 131
176. Authors Consulted ... 131
177. Coexistence of a Grave Sound When Two or More Acute
Sounds Are Produced .. 132
178. Beats in Poorly Tuned Instruments Are the Same as Coexistence 133
179. Authors Consulted .. 134

Section 10: On the Coexistence of Vibrations with Other
Sorts of Motions ... 135
180. These Motions Can Coexist 135
181. On a Very Common Coexistence of a Circular Motion
with Vibrations ... 135

Part III On Transmitted Vibrations, or the Propagation of Sound

Section 1: On the Propagation of Sound Through Air
and Through Other Gaseous Fluids 139
182. General Notions of Sound Propagation 139
183. Air Is the Ordinary Conductor of Sound 139
184. Sound Propagates in all Directions from the Center 139
185. Sound Propagation Through Air Does Not Differ Essentially
from the Vibrations of Air in a Wind Instrument 140
186. Air Does Not Make More or Fewer Vibrations
Than the Sounding Body 140
187. Sound Waves ... 141
188. Propagations of Different Tones (Timbre) of Sound 141
189. Sound Is Also Propagated Along Different Curves 142
190. Several Sounds Can Be Propagated at the Same Time
in the Same Mass of Air 143
191. Uniformity of Motion 143
192. Speed of Sound According to Ordinary Theory 143
193. Results of Observations 143
194. Circumstances That Affect the Speed of Sound 144
195. Ways of Explaining the Differences Between Observation
and Theory ... 144
196. The Speed of Sound in Different Gases 145
197. Intensity of Sound Transmitted in the Air 146
198. Intensity of Sound Transmission Through Different
Types of Gases .. 147
199. Sound Propagation Through Vapors 149
200. Distances at Which Sound Can Be Perceived 150
201. Megaphones ... 150
202. Ear Trumpets ... 153
203. Speaking Chambers 153
204. General Explanation of an Echo 154
205. Different Cases in Which an Echo Is Formed 155
206. Remarkable Examples of Echoes 157
Section 2: On the Propagation of Sound Through Liquids and Solids

212. All Possible Materials Propagate Sound

213. Propagation of Sound in Water

214. The Resistance of Water Delays the Vibrations of a Sounding Body

215. The Velocity of Sound Through Liquid Matter is Unknown

216. The Intensity of Sound Propagated Through Water and Through Other Liquids

217. Solid Matter Also Propagates Sound

218. Direction of Motions

219. Velocity of Sound Through Solids

220. Experiments That Have Been Performed on This Subject

221. Intensity of Sound Propagation Through Solids

222. Reinforcement of Sound by a Resonant Board

223. Sound Produced by Motions in all Bodies That Can Vibrate in the Same Time Intervals

224. Vessels Can be Broken by the Voice, According to Some Authors

Part IV On the Sensation of Sound: On the Hearing of Men and Animals

Section 1: Human Hearing

225. Explanations

226. Position and Parts of These Organs

227. The Outer Ear

228. The Auditory Meatus

229. The Tympanic Cavity

230. The Labyrinth

231. The Auditory Nerve

232. Ordinary Transmission of Impressions to the Inner Ear

233. Transmission of Impressions by the Solid Part of the Head

234. The Impressions Act on the Entire Labyrinth

235. Authors Consulted

B. The Subject of Hearing

236. The Ear Records the Sensation of All Sufficiently Rapid and Sufficiently Intense Disturbances

237. It Records the Sensation of the Relative Frequency of the Vibrations
238. Very Small Differences from the Exact Ratios of Tones Are Not Perceptible to the Ear .. 179
239. Ordinarily, the Shape of a Sounding Body and Its Mode of Vibration Cannot Be Determined by Hearing 179
240. Timbre and Articulation of Sounds 180
241. Distance of a Sound .. 180
242. Direction of a Sound .. 180

Section 2: The Hearing of Different Animals 183
243. General Remarks ... 183
244. Essential Organs Necessary for Hearing 183
245. Auditory Organs of Cuttlefish, Octopi, and Squid 184
246. Auditory Organs of Fish .. 184
247. Auditory Organs of Reptiles .. 184
248. Auditory Organs of Birds ... 185
249. Auditory Organs of Mammals 185
250. Summary of the Organs Found in Different Animals 185
251. Authors Consulted .. 186

Appendix A: Program of the Institut de France, in Which a Prize Is Proposed for the Mathematical Theory of Vibrating Plates ... 187
Appendix B: Reports on the Clavicylinder and on the Acoustic Research of the Author ... 191
Appendix C: Figures ... 203
Name Index ... 221
Subject Index ... 223
Treatise on Acoustics
The First Comprehensive English Translation of E.F.F. Chladni's Traité d'Acoustique
Chladni, E.F.F.
2015, XXXI, 227 p., Hardcover
ISBN: 978-3-319-20360-7