Contents

Part I Control of Electronic Processes with Strong Laser Fields

1 Strong-Field Induced Atomic Excitation and Kinematics 3
 U. Eichmann
 1.1 Introduction .. 3
 1.2 Strong Field Excitation of Atoms by Frustrated
 Tunneling Ionization (FTI) 5
 1.2.1 Linearly Polarized Laser Fields 5
 1.2.2 Elliptically Polarized Laser Fields 11
 1.2.3 Intermediate Conclusion 11
 1.2.4 Detection of Excited Atoms 12
 1.3 Frustrated Tunneling Ionization in Strong-Field
 Fragmentation of Molecules 14
 1.3.1 Hydrogen Molecule 14
 1.3.2 Small Molecules 15
 1.3.3 Dimers ... 16
 1.4 Kinematic Effects on Atoms 18
 1.4.1 Acceleration of Neutral Atoms in Strong
 Laser Fields 18
 1.4.2 Rydberg Atoms in Strong Laser Fields 21
 1.5 Summary and Outlook ... 23
 References .. 23

2 Few-Cycle-Laser-Pulse Induced and Assisted Processes
 in Atoms, Molecules, and Nanostructures 27
 Dejan B. Milošević
 2.1 Introduction ... 27
 2.2 Definition of Few-Cycle Laser Pulse Parameters 28
 2.3 Phase Space Path Integral and Transition Matrix Element 29
 2.4 Above-Threshold Ionization by Few-Cycle Pulses 33
 2.5 High-Order Harmonic Generation by Few-Cycle Pulses 39
3 Angular Streaking for Strong Field Ionization of Molecules—Attosecond Physics Without Attosecond Pulses

Jian Wu and Reinhard Dörner

3.1 Coincidence Angular Streaking
3.2 Phase-Dependent Directional Molecular Bond Breaking in a Symmetric Laser Pulse
3.3 Electron Tunnelling Site in Electron Localization-Assisted Enhanced Ionization
3.4 Orientation-Dependent Single Ionization of CO Molecule
3.5 Sequencing Multiple Ionization of a Multicenter Molecular Cluster
3.6 Conclusions

References

4 Control of Ultrafast Electron Dynamics with Shaped Femtosecond Laser Pulses: From Atoms to Solids

Matthias Wollenhaupt, Tim Bayer and Thomas Baumert

4.1 Introduction
4.2 Fundamentals of Femtosecond Pulse Shaping
 4.2.1 Theoretical Description
 4.2.2 Experimental Implementation
 4.2.3 Adaptive Optimization
4.3 Isolated Model Systems
 4.3.1 Coherence Transfer from Light to Matter
 4.3.2 Control by Polarization-Shaped Laser Pulses
 4.3.3 Strong Field Control
4.4 Control of Ionization Processes in Dielectrics
4.5 Summary and Conclusion

References

Part II Attosecond Pulses for Inducing and Probing Electronic Processes

5 XUV Attosecond Photoionization and Related Ultrafast Processes in Diatomic and Large Molecules

Victor Despré, Alexandre Marciniak, Thomas Barillot, Vincent Loriot, Arnaud Rouzée, Marc J.J. Vrakking and Franck Lépine

5.1 Introduction
5.2 The First Attoseconds of the Light-Matter Interaction: Attosecond Control of Molecular Ionization 127
5.3 Photo-Dissociation: Attosecond Control of Dissociation Pathways 131
5.4 Attosecond Control of the Charge Localization 133
5.5 Ultrafast XUV Physics Extended to Large Molecular Species: Case of PAH and Femto-Astrochemistry 135
5.6 The Ionization Step: Attosecond Delay in Photoemission in the C\textsubscript{60} Surface Plasmon Resonance 137
5.7 Conclusion 139
References 140

6 Attosecond Electron Spectroscopy in Molecules 143
Francesca Calegari, Jason Greenwood, Candong Liu, Matteo Lucchini, Maurizio Reduzzi, Giuseppe Sansone, Andrea Trabattoni and Mauro Nisoli
6.1 Introduction 144
6.2 Temporal Gating Techniques for the Generation of Isolated Attosecond Pulses 145
6.3 Streaking Spectroscopy and Carrier-Envelope Phase of Attosecond Pulses 147
6.4 Velocity Map Imaging Spectroscopy of Diatomic Molecules 150
6.5 Electron Dynamics in Biomolecules 155
References 158

7 Controlling Atomic Photoabsorption by Intense Lasers in the Attosecond Time Domain 161
Xiao-Min Tong and Nobuyuki Toshima
7.1 Introduction 161
7.2 Theoretical Method 163
7.2.1 Working Equation 164
7.2.2 Interpretation of the Working Equation 165
7.2.3 Photoionization 166
7.2.4 Photoexcitation (Photoabsorption) 167
7.3 Results 169
7.3.1 IR Assisted Photoionization 169
7.3.2 IR Assisted Photoexcitation 173
7.4 Summary 174
References 174
8 Photoionization Time Delays .. 177
J. Marcus Dahlström, Morgane Vacher, Alfred Maquet,
Jérémie Caillat and Stefan Haessler
8.1 Introduction .. 178
8.2 Phase-Shifts and Time-Delays 179
 8.2.1 Formal Definition of a Photoionization Delay 179
 8.2.2 Ionization Dynamics in Numerical Experiments 182
8.3 Analysis of Two-Photon XUV +IR Ionization 187
 8.3.1 Asymptotic Approximation for ATI Transition Amplitudes 190
 8.3.2 Extracting Time-Delay Information from Laser-Assisted Photoionization Signals 192
8.4 Review of Experimental Delay Measurements 196
 8.4.1 Atomic-Delay Measurements Using Attosecond Pulse Trains 196
8.5 Conclusions ... 199
References ... 200

Part III Surfaces, Nanostructures and Solids in Strong Laser Fields

9 Ultrafast Nanoplasmonic Photoemission 205
Péter Dombi
9.1 Introduction ... 205
 9.1.1 Introduction to Surface Plasmon Enhanced Electron Phenomena 205
 9.1.2 Surface Plasmons .. 206
9.2 Novel Nanoplasmonic Photoemission Phenomena 208
 9.2.1 Linear Versus Nonlinear Photoemission and Photocurrents 208
 9.2.2 Scale Parameters in Photoemission Processes 209
 9.2.3 Mechanisms of Photoemission and Related Phenomena 209
 9.2.4 Electron Acceleration Phenomena in Plasmonic Fields 219
 9.2.5 Surface Plasmon Induced Electron Acceleration in the Mid-infrared 224
9.3 Conclusions and Outlook ... 228
References ... 229
10 Highly Nonlinear and Ultrafast Optical Phenomena in Metallic Nanostructures ... 233
L. Wimmer, M. Sivis, G. Herink, S.V. Yalunin, K.E. Echternkamp and C. Ropers
10.1 Introduction .. 234
10.2 Photoelectron Dynamics at Sharp Metal Nanotips 234
 10.2.1 Nonlinear Photoemission 235
 10.2.2 Sub-cycle Electron Dynamics in Highly Localized Electric Fields ... 237
 10.2.3 Photoemission from Gold Nanotips Induced by Near- and Mid-infrared Femtosecond Pulses 239
 10.2.4 Nanostructure Streaking with Ultrashort THz Pulses 242
10.3 Extreme-Ultraviolet Light Generation in Plasmonic Nanostructures .. 247
 10.3.1 Strong-Field EUV Light Generation from Gas Atoms 248
 10.3.2 Experimental Methods 250
 10.3.3 Results and Discussion 251
References .. 255

11 Attosecond XUV Pulses and Surface Plasmon Polaritons: Two Case Studies ... 259
Mattia Lupetti and Armin Scrinzi
11.1 Introduction .. 259
11.2 Surface Plasmon Polaritons 260
 11.2.1 Excitation of SPPs .. 262
 11.2.2 Standard SPP Imaging Techniques 262
11.3 A Plasmon Enhanced Attosecond Extreme Ultraviolet Source .. 264
 11.3.1 Spatial Structure of the Plasmonic Field 266
 11.3.2 Geometry of the Tapered Nanoplasmonic Waveguide 266
 11.3.3 Wave-Guiding of XUV Pulses by the Tapered Waveguide .. 268
 11.3.4 PEAX Temporal Characterization 272
 11.3.5 PEAX Spatial Properties 273
 11.3.6 Comparison with Traditional Gas Harmonics 274
 11.3.7 Discussion and Experimental Issues 275
11.4 Attosecond Photoscopy of Surface Excitations 276
 11.4.1 Experimental Setup .. 277
 11.4.2 Theory of Attosecond Photoscopy 278
11.4.3 Low-Speed Approximation. 280
11.4.4 Approximation of the Photoelectron Distribution Function. 281
11.4.5 Numerical Simulation of the Photoscopic Spectrogram. 283
11.4.6 Analytic Model for the SPP Field on a Grating 284
11.4.7 Origin of Plasmon Dark and Bright Modes 288
11.4.8 Results of the Plasmon Imaging 289
11.5 Conclusions 290
References 291

12 Ultrafast Control of Strong-Field Electron Dynamics in Solids 295
Vladislav S. Yakovlev, Stanislav Yu. Kruchinin, Tim Paasch-Colberg, Mark I. Stockman and Ferenc Krausz
12.1 Introduction 295
12.2 Main Theoretical Concepts. 297
12.2.1 Wannier–Stark Resonances 298
12.2.2 Accelerated Bloch States 301
12.2.3 Nonresonant Interband Transitions 303
12.3 Strong-Field-Driven Electron Dynamics in Crystals 305
12.3.1 A Numerical Example 305
12.3.2 Ultrafast Injection and Control of Current in Dielectrics 307
12.4 Summary and Outlook 312
References 313

Part IV Atoms and Molecules Driven and Probed by Intense X-Ray Pulses

13 Atomic and Molecular Systems Under Intense X-Ray Radiation 319
Maria Krikunova, Nicusor Timneanu and Jakob Andreasson
13.1 Introduction 319
13.2 Temporal Diagnostics of Individual FEL Pulses 322
13.2.1 Solid Surface Cross-Correlation Technique. 323
13.3 Ultrafast Ionization Dynamics of Small Quantum Systems 327
13.3.1 XUV Pump—NIR Probe Experiments of Multi-electron Relaxation Dynamics 328
13.4 The Role of Ionization Dynamics for High Resolution Imaging of Bio- and Bio-like Nanoparticles 331
13.5 Automated and Unsupervised Identification and Classification of Single-Shot Single-Particle CDI Data. 334

Contents
13.6 Future Perspectives of AMO Science at Novel Light Sources ... 336
References .. 337

14 Probing Molecular Photoexcited Dynamics by Soft X-Rays 341
Markus Gühr
14.1 Introduction ... 341
14.2 Molecular Processes 343
 14.2.1 Experimental Work on Molecular Dynamics
 Outside the BOA Framework 346
14.3 Probing Molecular Electronic Structure by Soft X-Rays 348
 14.3.1 X-Ray Absorption 350
 14.3.2 X-Ray Emission 352
 14.3.3 Auger Electron Emission and Fragmentation 353
 14.3.4 X-Ray Photoelectron Spectroscopy 355
14.4 Sources for Ultrafast X-Ray Spectroscopy 356
14.5 Ultrafast X-Ray Probing of Photoexcited Molecular Dynamics .. 359
14.6 Outlook .. 363
References .. 364

Index .. 373
Ultrafast Dynamics Driven by Intense Light Pulses
From Atoms to Solids, from Lasers to Intense X-rays
Kitzler, M.; Gräfe, S. (Eds.)
2016, XX, 379 p. 159 illus., 87 illus. in color., Hardcover
ISBN: 978-3-319-20172-6