Contents

1 Deformation of a Thin Bonded Transversely Isotropic Elastic Layer .. 1
 1.1 Deformation Problem Formulation 1
 1.2 Perturbation Analysis of the Deformation Problem 4
 1.3 Contact Problem Formulation for a Thin Elastic Layer 8
 1.4 Asymptotic Solution of the Contact Problem for a Thin Bonded Compressible Elastic Layer 10
 1.5 Asymptotic Models for the Deformation Response of a Thin Bonded Compressible Elastic Layer 12
 1.5.1 Zeroth-Order Asymptotic Model for the Contact Problem .. 12
 1.5.2 Asymptotic Model for the Pasternak Foundation .. 14
 1.5.3 Refined Contact Model with Allowance for Tangential Displacements on the Contact Interface 15
References .. 17

2 Asymptotic Analysis of the Contact Problem for Two Bonded Elastic Layers 19
 2.1 Contact Problem Formulation .. 19
 2.1.1 Geometry of Surfaces in Contact 19
 2.1.2 Unilateral Contact Conditions 22
 2.1.3 Governing Integral Equation .. 24
 2.2 Distributional Asymptotic Analysis 27
 2.2.1 Moment Asymptotic Expansion for the Integral Operator of the Frictionless Contact Problem for a Thin Elastic Layer .. 27
 2.2.2 Asymptotic Solution of the Contact Problem for Slightly Curved Thin Compressible Elastic Layers 30
 2.2.3 Comparison of the Results Obtained by the Perturbation and Distributional Asymptotic Methods 32
2.3 Boundary-Layer Problem in the Compressible Case 33
 2.3.1 Variation of the Contact Area 33
 2.3.2 Boundary-Layer Integral Equation 35
 2.3.3 Aleksandrov’s Approximation 37
 2.3.4 Boundary-Layer in the Compressible Case 40
2.4 Incompressible Transversely Isotropic Elastic Material 41
 2.4.1 Stress-Strain Relations for Incompressible Material 42
 2.4.2 Isotropically Compressible Transversely Isotropic Materials .. 44
2.5 Deformation of a Thin Incompressible Transversely Isotropic Elastic Layer Bonded to a Rigid Substrate 45
 2.5.1 Perturbation Analysis of the Deformation Problem for a Thin Incompressible Elastic Layer 46
 2.5.2 Local Indentation of a Thin Weakly Compressible Elastic Layer .. 50
2.6 Boundary-Layer Problem in the Incompressible Case 51
 2.6.1 Transformation of the Governing Integral Equation 51
 2.6.2 Boundary-Layer Integral Equation 52
 2.6.3 Special Solutions of the Boundary-Layer Integral Equation .. 56
 2.6.4 Solution of the Boundary-Layer Integral Equation with a Polynomial Right-Hand Side 59
 2.6.5 Approximate Solution of the Boundary-Layer Integral Equation .. 60
2.7 Leading-Order Asymptotic Solution of the Contact Problem for Incompressible Layers 63
 2.7.1 Governing Differential Equation 63
 2.7.2 Boundary Condition in the Case of Fixed Contact Area 64
 2.7.3 Boundary Conditions in the Case of Unilateral Contact .. 65
References .. 66

3 Unilateral Frictionless Contact of Thin Bonded Incompressible Elastic Layers .. 69
 3.1 Asymptotic Model for the Frictionless Contact of Thin Bonded Incompressible Layers 69
 3.1.1 Leading-Order Asymptotic Model for the Unilateral Contact .. 69
 3.1.2 Elliptical Contact of Thin Bonded Incompressible Elastic Layers .. 71
 3.1.3 Similarity Analysis of the Contact Problem for Thin Bonded Incompressible Elastic Layers 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Axisymmetric Refined Contact Problem for Thin Bonded Incompressible Elastic Layers, with Allowance for Tangential Displacements on the Contact Interface</td>
<td>73</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Refined Formulation of the Axisymmetric Contact Problem</td>
<td>74</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Equation for the Contact Approach</td>
<td>76</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Equation for the Contact Radius</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Contact Pressure</td>
<td>79</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Approximate Equation for the Radius of the Contact Area</td>
<td>80</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Approximate Solution</td>
<td>82</td>
</tr>
<tr>
<td>3.3</td>
<td>Refined Contact Model for a Thin Bonded Incompressible Elastic Layer with the Effect of Tangential Displacements</td>
<td>85</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Refined Formulation of the Contact Problem</td>
<td>85</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Approximate Solution for the Contact Force</td>
<td>86</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Asymptotic Solution of the Resulting Algebraic Problem</td>
<td>89</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Approximation for the Contact Area</td>
<td>91</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Equation for the Contact Force</td>
<td>92</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Variation of the Contact Area</td>
<td>94</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Comparison with the Solution of the Axisymmetric Contact Pressure</td>
<td>96</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

4 Frictionless Contact of Thin Viscoelastic Layers

4.1 Deformation of a Thin Viscoelastic Layer

4.1.1 Viscoelastic Constitutive Laws | 99 |
4.1.2 Correspondence Principle for a Viscoelastic Layer	99
4.1.3 Deformation of a Thin Compressible Transversely Isotropic Viscoelastic Layer Bonded to a Rigid Base	101
4.1.4 Deformation of a Thin Bonded Incompressible Transversely Isotropic Viscoelastic Layer	103

4.2 Axisymmetric Contact of Thin Compressible Viscoelastic Layers

4.2.1 Contact Problem Formulation | 107 |
4.2.2 Axial Aggregate Relaxation and Creep Functions	107
4.2.3 Instantaneous Contact	109
4.2.4 Monotonically Increasing Contact Area	110
4.2.5 Monotonically Increasing Contact Area: Contact Pressure	110
4.2.6 Case of Stepwise Loading	111
4.2.7 Monotonically Decreasing Contact Area	111
4.2.8 Case of Stepwise Displacement-Controlled Loading	111
4.3 Axisymmetric Contact of Thin Incompressible Viscoelastic Layers: Monotonically Increasing Contact Area 122
 4.3.1 Formulation of the Contact Problem 122
 4.3.2 Equation for the Contact Approach 125
 4.3.3 Equation for the Radius of the Contact Area 125
 4.3.4 Example: General Paraboloid of Revolution 126
 4.3.5 Contact Pressure Distribution 127
 4.3.6 Example: Paraboloid of Revolution 129

4.4 Axisymmetric Refined Contact Problem for a Thin Bonded Incompressible Viscoelastic Layer with Allowance for Tangential Displacements on the Contact Surface 129
 4.4.1 Refined Formulation of the Contact Problem 130
 4.4.2 Equation for the Punch Displacement 133
 4.4.3 Equation for the Radius of Contact Area 134
 4.4.4 Contact Pressure 136

4.5 Elliptical Contact of Thin Bonded Incompressible Viscoelastic Layers: Monotonically Increasing Contact Area 138
 4.5.1 Formulation of the Contact Problem 138
 4.5.2 General Solution for the Case of Elliptical Contact 140
 4.5.3 Case of Stepwise Loading 143
 4.5.4 Axisymmetric Contact Problem for Incompressible Coatings: Case of Stepwise Loading 144
 4.5.5 Case of Incompressible Layers Following the Maxwell Model 145
 4.5.6 Force-Displacement Relationship 146

5 Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer 149
 5.1 Linear Biphasic Model 149
 5.1.1 Linear Biphasic Theory 149
 5.1.2 Boundary and Initial Conditions 153
 5.1.3 Equivalent Elastic Material Properties of a Transversely Isotropic Biphasic Material for the Instantaneous Response 155
 5.1.4 Axisymmetric Biphasic Model 157
 5.2 Confined Compression of a Biphasic Material 158
 5.2.1 Confined Compression Problem 158
 5.2.2 Governing Equation of the Confined Compression Model 160
 5.2.3 Biphasic Stress Relaxation in Confined Compression 162
 5.2.4 Biphasic Creep in Confined Compression 164
5.2.5 Dynamic Behavior of a Biphasic Material Under Cyclic Compressive Loading in Confined Compression ... 167
5.3 Unconfined Compression of a Biphasic Material 169
 5.3.1 Unconfined Compression Problem 169
 5.3.2 Solution of the Unconfined Compression Problem 171
 5.3.3 Unconfined Compression Model 175
 5.3.4 Biphasic Stress Relaxation in Unconfined Compression 179
 5.3.5 Biphasic Creep in Unconfined Compression 182
 5.3.6 Cyclic Compressive Loading in Unconfined Compression 183
 5.3.7 Displacement-Controlled Unconfined Compression Test 185
 5.3.8 Force-Controlled Unconfined Compression Test 187
5.4 Biphasic Poroviscoelastic (BPVE) Model 187
 5.4.1 Linear Biphasic Poroviscoelastic Theory 188
 5.4.2 Confined Compression of a Biphasic Poroviscoelastic Material . 190
 5.4.3 Unconfined Compression of a BPVE Material 192
 5.4.4 Torsion of a Biphasic Poroviscoelastic Material 194
References .. 199

6 Contact of Thin Biphasic Layers ... 203
 6.1 Deformation of a Thin Bonded Biphasic Layer 203
 6.1.1 Deformation Problem Formulation 203
 6.1.2 Perturbation Analysis of the Deformation Problem:
 Short-Time Asymptotic Solution 205
 6.1.3 Solution of the Resulting Ordinary Boundary-Value Problem ... 207
 6.1.4 Displacements of the Solid Matrix 210
 6.1.5 Interstitial Fluid Pressure and Relative Fluid Flux 211
 6.1.6 Stresses in the Solid and Fluid Phases 212
 6.1.7 Long-Term (Equilibrium) Response of a Thin Bonded Biphasic Layer Under Constant Loading 213
 6.2 Deformation of a Thin Transversely Isotropic Biphasic Poroelastic Layer Bonded to a Rigid Impermeable Substrate 214
 6.2.1 Deformation Problem Formulation 214
 6.2.2 Short-Time Asymptotic Analysis of the Deformation Problem ... 215
 6.2.3 Local Indentation of a Thin BPVE Layer 218
 6.2.4 Reduced Relaxation and Creep Function
 for the Fung Model ... 219
6.3 Contact of Thin Bonded Transversely Isotropic BPVE Layers . . . 221
 6.3.1 Contact Problem Formulation for BPVE Cartilage
 Layers . 221
 6.3.2 Exact Solution for Monotonic Loading 224
References . 227

7 Articular Contact Mechanics . 229
 7.1 Asymptotic Modeling Methodology for Tibio-Femoral
 Contact . 229
 7.1.1 Articular Contact in Multibody Dynamics 229
 7.1.2 Articular Cartilage Structure and Models 231
 7.1.3 Articular Surface Geometry . 233
 7.1.4 Contact Constitutive Relation. Elliptical Contact
 of Thin Incompressible Elastic Layers 236
 7.1.5 Asymptotic Model for Elliptical Contact of Thin
 Incompressible Viscoelastic Layers 238
 7.1.6 Approximation of the Articular Femur and Tibia
 Geometries by Elliptic Paraboloids . 239
 7.1.7 Determining the Effective Geometrical Characteristics
 from Experimental Surface Data . 241
 7.1.8 Generalization of the Contact Constitutive Relation 243
 7.1.9 Modified Incomplete Storage Shear Modulus
 and Loss Angle . 245
 7.2 Hunt–Crossley Contact Model . 247
 7.2.1 Nonlinear Viscoelastic Hunt–Crossley Model
 of Impact . 247
 7.2.2 Maximum Displacement . 248
 7.2.3 Coefficient of Restitution . 249
 7.2.4 Interpretation of the Damping Parameter
 in Terms of the Coefficient of Restitution 250
 7.2.5 Interpretation of the Damping Parameter
 in Terms of the Loss Angle in the Hunt–Crossley
 Model . 251
 7.2.6 Equivalent Hunt–Crossley Model for Articular
 Contact . 253
References . 255

8 Contact of Thin Inhomogeneous Transversely Isotropic
Elastic Layers . 261
 8.1 Deformation of an In-Plane Inhomogeneous Elastic Layer 261
 8.1.1 Deformation Problem Formulation 261
 8.1.2 Perturbation Analysis of the Deformation Problem 263
8.1.3 Local Indentation of the In-Plane Inhomogeneous Layer: Leading-Order Asymptotics for the Compressible and Incompressible Cases 266

8.2 Deformation of an Elastic Layer with Thickness-Variable Inhomogeneous Properties ... 267
8.2.1 Deformation Problem Formulation 267
8.2.2 Perturbation Analysis of the Deformation Problem 268
8.2.3 Local Indentation of the Inhomogeneous Layer: Leading-Order Asymptotics for the Compressible and Incompressible Cases .. 273

8.3 Contact of Thin Bonded Incompressible Inhomogeneous Layers ... 274
8.3.1 Contact Problem Formulation 274
8.3.2 Axisymmetric Unilateral Contact Problem 276
8.3.3 Contact Problem for a Thin Bonded Non-homogeneous Incompressible Elastic Layer with Fixed Contact Area 278
8.3.4 Axisymmetric Contact Problem with Fixed Contact Area ... 280

8.4 Deformation of a Thin Elastic Layer Coated with an Elastic Membrane ... 282
8.4.1 Boundary Conditions for a Coated Elastic Layer 282
8.4.2 Deformation Problem Formulation 286
8.4.3 Asymptotic Analysis of the Deformation Problem 287
8.4.4 Local Indentation of the Coated Elastic Layer: Leading-Order Asymptotics for the Compressible and Incompressible Cases .. 289

References .. 291

9 Sensitivity Analysis of Articular Contact Mechanics 293
9.1 Non-elliptical Contact of Thin Incompressible Viscoelastic Layers: Perturbation Solution 293
9.1.1 Formulation of the Contact Problem 293
9.1.2 Equation for the Contact Approach 296
9.1.3 Equation for the Integral Characteristics of the Contact Area ... 298
9.1.4 Equation for the Contact Pressure 299
9.1.5 Limiting Case Problem: Elliptical Contact Area 300
9.1.6 Slightly Perturbed Elliptical Contact Area 302
9.1.7 Determination of the Contour of the Contact Area 305
9.1.8 Asymptotics of the Contact Pressure 308
9.1.9 Slightly Perturbed Circular Contact Area 309
9.2 Contact of Two Bonded Thin Transversely Isotropic Elastic Layers with Variable Thicknesses 312
 9.2.1 Unperturbed Asymptotic Model. 312
 9.2.2 Contact Problem for a Thin Transversely Isotropic Elastic Layer with Variable Thickness 314
 9.2.3 Perturbation Solution .. 316
 9.2.4 Derivation of Asymptotic Expansions 318
 9.2.5 Asymptotic Solution for a Thin Compressible Layer 319
 9.2.6 Asymptotic Solution for a Thin Incompressible Layer ... 321
 9.2.7 Perturbation of the Contact Pressure in the Compressible Case ... 324
 9.2.8 Application to Sensitivity Analysis of the Contact Interaction Between Two Thin Incompressible Layers ... 326
References .. 329

Index .. 331
Contact Mechanics of Articular Cartilage Layers
Asymptotic Models
Argatov, I.; Mishuris, G.
2015, XVIII, 335 p. 53 illus., 46 illus. in color., Hardcover
ISBN: 978-3-319-20082-8