Contents

1 Introduction .. 1
 1.1 Medical Background and Requirements 1
 1.2 Advanced Robotics for Medical Rehabilitation 3
 1.2.1 Rehabilitation Robots 3
 1.2.2 Motivation for Rehabilitation Robots 4
 1.2.3 Examples of Rehabilitation Robots 5
 1.2.4 Common Features of Rehabilitation Robots 6
 1.3 Critical Issues in Rehabilitation 7
 1.3.1 Upper Limb Rehabilitation 7
 1.3.2 Ankle Rehabilitation 7
 1.3.3 Interaction Control 10
 1.4 Summary ... 12
 References .. 12

2 Literature Review ... 15
 2.1 Medical Needs and Existing Rehabilitation Devices 15
 2.1.1 Upper Limb Rehabilitation Robots 15
 2.1.2 Ankle Rehabilitation Robots 17
 2.1.3 Rehabilitation Robots for Masticatory System 22
 2.2 Human Musculoskeletal Models 23
 2.2.1 Movements of Upper Limb 23
 2.2.2 Model of Ankle Joint 25
 2.2.3 Model of Masticatory System 28
 2.3 Control of Rehabilitation Robots 28
 2.3.1 Motion/Force Control Strategies 28
 2.3.2 EMG Signals Based Control 30
 2.3.3 Interaction Controllers for Rehabilitation Robots 33
 2.4 Discussion ... 36
 2.5 Summary .. 39
 References .. 39
Contents

3 Physiological Model of the Masticatory System

- 3.1 Introduction to the Masticatory System
 - 3.1.1 Skeletal Structure
 - 3.1.2 Mandibular Muscles
 - 3.1.3 The Temporomandibular Joint (TMJ)
- 3.2 Masticatory System Physiological Model Development
 - 3.2.1 Revised Musculotendon Model
 - 3.2.2 Jaw Musculoskeletal Model Derivation
 - 3.2.3 Kinematic Model
- 3.3 Hybrid Model of the Masticatory System
 - 3.3.1 Physiological Model Reconfiguration
 - 3.3.2 Analysis of Mandibular Muscle Based on EMG
- 3.4 Jaw Rehabilitation
 - 3.4.1 Treatment Methods and Techniques
 - 3.4.2 Existing Jaw Exoskeletons and Interfaces
 - 3.4.3 Neuromuscular Interface: Conjecture
- 3.5 Summary

4 Modelling Human Shoulder and Elbow

- 4.1 Anatomy of the Human Upper Limb
 - 4.1.1 The Human Shoulder
 - 4.1.2 Spherical Wrist Mechanism for Exoskeleton Shoulder
- 4.2 The 4R Mechanism for the Exoskeleton Shoulder
 - 4.2.1 Kinematic Modelling of the 4R Mechanism
 - 4.2.2 Forward Kinematics
 - 4.2.3 Inverse Kinematics
 - 4.2.4 Range of Motion of Joint 4 and Shoulder Axial Rotation
- 4.3 Physiological Model of the Elbow Joint
 - 4.3.1 Elbow Model Development
 - 4.3.2 Model Setup
- 4.4 Elbow Model Validation
 - 4.4.1 EMG Digital Signal Processing
 - 4.4.2 Physiological Model Validation
- 4.5 Summary

5 Upper Limb Exoskeleton Development

- 5.1 Design Optimisation of a 4R Shoulder Mechanism
 - 5.1.1 Optimisation Algorithms
 - 5.1.2 Workspace of the 4R Mechanism
 - 5.1.3 Singularity Analysis
- 5.2 Exoskeleton Kinematic Design
5.3 Design Considerations
5.3.1 Mechanical Interference
5.3.2 Range of Motion of Exoskeleton Joints
5.3.3 Clearance to User’s Upper Limb
5.3.4 Joint Alignment
5.4 System Configuration
5.4.1 Actuators and Sensors
5.4.2 Safety Features
5.4.3 Human–Robot Interface
5.5 Summary
References

6 Motion and Interactive Control for Upper Limb Exoskeleton
6.1 Smooth Trajectory Planning
6.1.1 Minimum Jerk Trajectory
6.1.2 Trajectories for the Shoulder
6.2 Combining a Sequence of Movements
6.2.1 Cubic Spline Interpolation
6.2.2 Trajectories with Reversing Movement
6.2.3 Turning for 2-DOF Spherical Shoulder
6.3 Dynamic Model of Exoskeleton
6.3.1 Actuator Torque
6.3.2 Inertial Torque
6.3.3 Gravity Compensation
6.3.4 Friction Compensation
6.4 Interactive Control Strategies
6.4.1 Impedance of an Exoskeleton
6.4.2 Control of the Elbow Joint
6.4.3 Control of the Redundant Shoulder Mechanism
6.5 Summary
References

7 Kinematic and Computational Model of Human Ankle
7.1 Mathematical Description of the Biaxial Ankle Model
7.1.1 Identification of the Reduced Biaxial Model
7.1.2 Gradient Computation of the Kinematic Model
7.2 Online Identification of a Biaxial Ankle Model
7.2.1 Online Identification Algorithms
7.2.2 Variation of Axis Tilt Angles with Joint Displacements
7.2.3 Variation of Axis Tilt Angles with Measured Euler Angles
7.3 Computational Model of the Human Ankle
7.3.1 Determination of Model Complexity
7.3.2 Modelling of Force Elements
7.3.3 Definition of Force Element Parameters
7.4 Validation and Application of Ankle Model .. 207
7.4.1 Simulations Involving Constant Axis Tilt Angles 207
7.4.2 Validation of Passive Moment–Displacement Characteristics 209
7.4.3 Simulation of Active Ankle–Foot Motion/Behaviour 212
7.4.4 Rehabilitation Trajectory Generation 213
7.4.5 Experimental Results .. 217
7.5 Summary .. 219
References .. 220

8 Development of the Ankle Rehabilitation Robot 223
8.1 Determination of a Suitable Robot Kinematic Structure 223
8.2 Workspace, Singularity and Force Analyses 227
8.2.1 Analysis for 3-Link Parallel Mechanism 227
8.2.2 Analysis for 4-Link Parallel Mechanism 234
8.2.3 Evaluation of 4-Link Design with Additional Constraints 237
8.3 System Description .. 241
8.4 MIMO Actuator Force Control ... 243
8.4.1 Simulation Results for Disturbance Rejection and Back-drivability 246
8.4.2 Experimental Results for Stability and Performance Evaluation 249
8.4.3 Comparison of Simulation and Experimental Results 256
8.5 Summary .. 256
References .. 257

9 Adaptive Ankle Rehabilitation Robot Control Strategies 259
9.1 Model Integration and Elementary Robot Control 259
9.1.1 Dynamic Modelling of Parallel Mechanism 259
9.1.2 Integration of Model with Foot and Actuator Dynamics 261
9.1.3 Elementary Robot Control .. 264
9.1.4 Simulation and Experimental Results .. 265
9.2 Adaptive Interaction Control via Variable Impedance 270
9.2.1 Biomechanical Model-Based Impedance Adjustment 270
9.2.2 Simulation and Experimental Results .. 272
9.3 Adaptive Interaction Control via Assistance Adaptation 275
9.3.1 Impedance Control with Adaptive Feed-Forward Force 275
9.3.2 Alternative Error Dependency Functions 277
9.3.3 Work-Based Stiffness Adaptation 279
9.3.4 Reference Trajectory Modification 280
9.4 Simulated and Experimental Results

- **9.4.1 Basic Feed-Forward Moment Adaptation** 282
- **9.4.2 Effects of Different Error Dependency Functions** 285
- **9.4.3 Effects of Incremental Work-Based Stiffness Adaptation** 289
- **9.4.4 Effects of Reference Trajectory Modification** 293
- **9.4.5 Summary of Experimental Results** 295

9.5 Overall Control Structure and Implementation of Rehabilitation Exercises 296

9.6 Summary ... 298

References .. 299

10 Conclusion and Future Work 301

- **10.1 Book Contributions** .. 301
 - **10.1.1 Human Musculoskeletal Models** 301
 - **10.1.2 Development of Rehabilitation Devices** 305
 - **10.1.3 Control Strategies for Robot-Assisted Rehabilitation** 308
- **10.2 Outlook and Future Work** .. 312
 - **10.2.1 Design Optimisation and Improvement** 312
 - **10.2.2 Further Investigation of Human Models** 314
 - **10.2.3 Advanced Adaptive Interaction Controllers** 317
- **10.3 Summary** .. 320

References .. 320

Appendix A: Physiological Model of the Elbow in MATLAB/Simulink ... 323

Appendix B: Optimal 4R Mechanism Configurations 331

Appendix C: Supplementary Material on Robot Design Analysis 341
Advanced Robotics for Medical Rehabilitation
Current State of the Art and Recent Advances
Xie, S.
2016, XXII, 343 p., Hardcover
ISBN: 978-3-319-19895-8