Contents

1 **ONE-DIMENSIONAL MATERIAL THEORY** 1

1.1 Deformations, Stresses, and Work 1

1.2 Elasticity 6

1.3 Viscoelasticity (Rheology) 9
 1.3.1 The NEWTON Element 10
 1.3.2 The MAXWELL Model 13
 1.3.3 The KELVIN Model 17
 1.3.4 The POYNTING Model 20
 1.3.5 The BURGERS Model 22
 1.3.6 Viscoelastic Models of Differential-Type 24
 1.3.7 Viscoelastic Models of Integral-Type 25
 1.3.8 Creep Damage 27
 1.3.9 Fatigue 31

1.4 Plasticity 34
 1.4.1 Rigid-Plastic Models 34
 1.4.2 Elastic-Plastic Models 38

1.5 Viscoplasticity 40

2 **INTRODUCTION TO TENSOR CALCULUS** 43

2.1 Vector and Tensor Algebra 44
 2.1.1 Summation Convention 44
 2.1.2 Vectors 46
 2.1.3 Dyads and Tensors 49
 Problem 1. Linearity 49
 2.1.4 The Inverse of a Tensor 55
 2.1.5 The Transpose of a Tensor 56
 2.1.6 Square Forms and Tensor Surfaces 59
 2.1.7 Cross-Product between Vectors and Tensors 59
 2.1.8 Orthogonal Tensors 62
 2.1.9 Transformations under Change of Basis 64
 2.1.10 Eigenvalues and Eigenvectors 65
 2.1.11 Spectral Forms of Symmetric Tensors 70
 Problem 2. Products between Vectors 72
 Problem 3. Direct Notation and Index Notation 74
 Problem 4. Orthogonal Tensors 75
 Problem 5. Eigenvalues and Invariants 77
 Problem 6. Spectral Form 80
2.1.12 Time-Dependent Vectors and Tensors 81
2.1.13 Rigid Body Dynamics 82
2.1.14 Bending of Bars 89
2.1.15 Higher-Order Tensors 93
2.1.16 Tetrads 98
Problem 7. Multiple Contraction 102

2.2 Vector and Tensor Analysis 104
2.2.1 The Directional Differential 104
2.2.2 The Nabla Operator 109
2.2.3 Cylindrical Coordinates 113
Problem 8. Cylindrical Coordinates I 115
Problem 9. Cylindrical Coordinates II 117
2.2.4 Integral Transformations 118

3 FOUNDATIONS OF CONTINUUM MECHANICS 121

3.1 Kinematics 121
3.1.1 Compatibility Conditions 134
Problem 10. Compatibility Conditions 137
Problem 11. Torsion 138

3.2 Stress Analysis 140
3.2.1 The Principles of Mechanics 147
3.2.2 Stress Functions 154
Problem 12. Stress Functions 159

4 THREE-DIMENSIONAL MATERIAL THEORY 164

4.1 Elasticity 165
4.1.1 Material Symmetry 169
4.1.2 Isotropic Elasticity 179
4.1.3 Projection Method 187
4.1.4 Identification of the Elastic Constants 190
4.1.5 Elastic Energy 192
4.1.6 Boundary Value Problems in Elastostatics 197
Problem 13. Elastostatic Boundary Value Problem 203
Problem 14. Pull-out of a Bar 206
Problem 15. Rotating Compact Disc 208
4.1.7 Variational Principles in Elastostatics 211
4.1.8 Displacement Functions 218
Problem 16. Force on an Elastic Half-Space 223
Problem 17. HERTZean Contact 239
Problem 18. Comparison of Variational Principles 233
Problem 19. Principle of Minimum Strain Energy 240
4.1.9 Wave Propagation in Elastic Media 244
Contents

4.2 Thermomechanics 249
- 4.2.1 Thermodynamic Balances 249
- 4.2.2 Thermoelasticity 252
- 4.2.3 Linear Thermoelasticity 255
- 4.2.4 Isotropic Linear Thermoelasticity 259
- 4.2.5 Boundary and Initial Value Problems of Thermoelasticity 261
 Problem 20. Thermoelastic Boundary Value Problem 262

4.3 Linear Viscoelasticity 266

4.4 Plasticity 271
- 4.4.1 Yield Criteria 272
- 4.4.2 Flow Rules 281
- 4.4.3 Hardening Rules 284
- 4.4.4 Consistency Condition 286
- 4.4.5 DRUCKER’s Postulate 288
 Problem 21. SCHMID’s Law 291
 Problem 22. J_2–Plasticity 293
- 4.4.6 Thermoplasticity 301

5 INDEX 312
Solid Mechanics
Theory, Modeling, and Problems
Bertram, A.; Glüge, R.
2015, XIII, 318 p. 87 illus., 1 illus. in color., Hardcover
ISBN: 978-3-319-19565-0