Contents

Part I Applied Methods of Modern Algebra and Analysis

1 The Absolute Stability of Orthorecursive Expansions in Redundant Systems of Subspaces .. 3
 V.V. Galatenko, T.P. Lukashenko and V.A. Sadovnichiy
 1.1 Introduction .. 3
 1.2 Main Results .. 5
 1.3 Proofs .. 6
 References ... 10

2 Topological Classification of Geodesic Flows on Revolution 2-Surfaces with Potential ... 11
 A.T. Fomenko and E.O. Kantonistova
 2.1 “Atoms” and Morse Functions 11
 2.2 Complicated Atoms and Molecules 15
 2.3 Topology of Integrable Hamiltonian Systems
 with Two Degrees of Freedom 16
 2.4 Geodesic Flows with Potential on the Surfaces
 of Revolution .. 20
 2.5 The Case of Gravitational Potential: Topological
 Classification .. 21
 2.6 Topological Equivalence Between Different
 Integrable Systems .. 24
 References ... 26

3 Multiplicative and Additive Problems of Partitions
 of Natural Numbers .. 29
 Vladimir Nikolaevich Chubarikov and Gleb Vladimirovich Fedorov
 3.1 Additive Problems ... 29
 3.2 Multiplicative Problems 33
 References ... 36
4 Critical Analysis of Amino Acids and Polypeptides Geometry

Alexander O. Ivanov, Alexander S. Mishchenko
and Alexey A. Tuzhilin

4.1 Introduction

4.2 Protein Data Bank

4.2.1 Extracting Information from PDB

4.2.2 The First Steps in Polypeptides Visualization

4.2.3 Some Difficulties in PDB-Files Treatment

4.3 Metric Analysis of PDB

4.3.1 Estimation of Spread in Lengths of Covalent Bonds in Amino Acids

4.3.2 Spread Estimation of Distances Between Consecutive Alpha Carbons (Beginning)

4.3.3 Spread Estimation of the Lengths of Peptide Bonds

4.3.4 Pauling Plane Law

4.3.5 Spread Estimation of Distances Between Consecutive Alpha Carbons (End)

4.3.6 Spread Estimation of Angles Between Covalent Bonds in Polypeptides

4.4 Amino Acids’ Mobility

4.4.1 Orientation of Amino Acids

4.5 Addendum (in collaboration with E. A. Vilkul)

4.5.1 The Number of Models’ Distribution

4.5.2 “Representativity” of the First Model from the Pathologies Point of View

4.5.3 “Representativity” of the First Model from the Plane Law Point of View

4.6 Geometry of Planar and Space Polygonal Lines:

Spirals Detecting

4.7 Torsion and Curvature of Space Curves

References

5 On the Riemann’s Problem for One Nonstrictly Hyperbolic System

V.V. Palin and E.V. Radkevich

5.1 Setting up the Problem

5.2 Algebraical Deduction

5.2.1 Critical Manifold Σ_+: Condition of Jordanity
5.3 The Form of One- and Two-Front Solutions of Regularized System

5.3.1 Stabilization Conditions: The Choice of Parameters of Problem

5.3.2 ODE System for One-Front Equation: Rankine–Hugoniot Conditions

5.3.3 The ODE System for Two-Front Solution

5.3.4 Rankine–Hugoniot Conditions

5.3.5 Lax’s Condition: One-Front Solution

5.3.6 Lax’s Condition for Two-Front Solution: Condition of Monotonicity

5.4 Shock Waves in a Small Neighborhood of Σ^+: Condition for Speed ω

5.4.1 The Existence of One-Front Solution then Moving in the Noncritical Eigenvector Direction

5.4.2 One-Front Solution as the Traveling Wave for $\omega = \lambda^+_{q=0}$

5.5 The Existence of Two-Front Solutions as $\omega = \lambda^+_{q=0}$

5.5.1 Different Forms of Two-Front Solutions

5.5.2 The Evident Appearance of b^+: The Conditions for Two-Front Solutions Type in the Terms of Front Speed

5.5.3 The Conditions for Two-Front Solutions of Humped Kink Type in the ω Terms

5.5.4 The Conditions for Two-Front Solutions of Shelf Type in the ω Terms

5.6 Bifurcation of Rarefaction Waves on the Critical Manifold Σ^+

5.6.1 The Two-Front Analogue of the Rarefaction Wave: rs-Type

5.6.2 The Proof of the Existence of rs-Type Solution

5.6.3 The Two-Front Analogue of Rarefaction Wave: sr-Type

References

Part II Non-autonomous and Stochastic Dynamical Systems

6 Dynamics of Nonautonomous Chemostat Models

Tomás Caraballo, Xiaoying Han, Peter E. Kloeden and Alain Rapaport

6.1 Introduction

6.2 Preliminaries on Nonautonomous Dynamical Systems
7 Asymptotic Dynamics of Stochastic Lattice Differential Equations: A Review..121
Xiaoying Han
7.1 Introduction ..121
7.2 Preliminaries on Random Dynamical Systems122
7.3 Random Attractors for Stochastic Differential Equations ..125
 7.3.1 Mathematical Settings125
 7.3.2 Selected Results for First-Order SLDEs127
 7.3.3 A Brief on Second-Order SLDEs131
 7.3.4 Mathematical Setting132
 7.3.5 Existence of Random Attractors133
7.4 Closing Remarks ...134
References...135

8 A Generalized Cahn-Hilliard Equation with Logarithmic Potentials..137
Alain Miranville
8.1 Introduction ..137
8.2 Setting of the Problem139
8.3 A Priori Estimates ..141
8.4 The Continuous Semigroup144
References...147

9 Attractors for Multivalued Processes with Weak Continuity Properties ..149
Piotr Kalita and Grzegorz Łukaszewicz
9.1 Introduction ..149
9.2 Abstract Theory of Pullback \mathcal{D}-Attractors for Multivalued Processes150
9.3 Application ..156
References...165
10 Lévy–Areas of Ornstein–Uhlenbeck Processes in Hilbert–Spaces ... 167
 Maria J. Garrido-Atienza, Kening Lu and Björn Schmalfuß
10.1 Introduction ... 167
10.2 The Construction of \((\omega \otimes_S \omega) \) for a Fractional Brownian motion 171
10.3 The Construction of \((\omega \otimes_S \omega) \) for a Brownian motion 176
10.4 Additional Properties of \((\omega \otimes_S \omega) \) ... 185
 References ... 187

11 Periodic and Almost Periodic Random Inertial Manifolds for Non-Autonomous Stochastic Equations. 189
 B. Wang
11.1 Introduction ... 189
11.2 Notation ... 190
11.3 Existence of Random Inertial Manifolds 192
11.4 Periodicity and Almost Periodicity of Inertial Manifolds 206
 References ... 208

12 Some Properties for Exact Generalized Processes 209
 Jacson Simsen and Érika Capelato
12.1 Introduction .. 209
12.2 Notations, Definitions, and Some Properties on the Multivalued Process 210
12.3 Pullback Attraction and Properties on \(\omega \)-limit Sets 213
12.4 Final Remarks 218
 References ... 218

13 Uniform Trajectory Attractors for Nonautonomous Dissipative Dynamical Systems 221
 Mikhail Z. Zgurovsky and Pavlo O. Kasyanov
13.1 Introduction and Setting of the Problem 221
13.2 Preliminary Properties of Weak Solutions 224
13.3 Uniform Trajectory Attractor and Main Result 226
13.4 Proof of Theorem 13.1 228
13.5 Conclusions .. 231
 References ... 231

14 Lyapunov Functions for Differential Inclusions and Applications in Physics, Biology, and Climatology 233
 Mark O. Gluzman, Nataliia V. Gorban and Pavlo O. Kasyanov
14.1 Introduction and Regularity of All Weak Solutions 233
14.2 A Lyapunov Type Function and Strongest Convergence Results for All Weak Solutions 235
14.3 Structure Properties and Regularity of Global and Trajectory Attractors .. 238
14.4 Faedo–Galerkin Approximation for the Global and Trajectory Attractors .. 239
14.5 Applications ... 240
References ... 241

Part III Optimization, Control and Decision Sciences for Continuum Mechanics Problems

Victor A. Sadovnichiy, Vladimir V. Alexandrov, Stephan S. Lemak, Dmitry I. Bugrov, Katerina V. Tikhonova and Raul Temoltzi Avila
15.1 Introduction ... 248
15.2 Robust Stability of Linear Systems ... 248
15.3 Minimax Stabilization and Antagonistic Game .. 255
15.4 Maximin Testing of Quality of Control Algorithm ... 260
15.4.1 Program Strategy of Testing ... 261
15.4.2 Closed-Loop Strategy of Testing .. 262
15.5 Conclusions .. 264
References ... 265

16 Dynamics of Solutions for Controlled Piezoelectric Fields with Multivalued “Reaction-Displacement” Law ... 267
Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Liliia S. Paliichuk and Alla M. Tkachuk
16.1 Introduction and the Main Problem ... 268
16.2 Setting of the Problem and the Main Results .. 269
References ... 275

17 Minimax Estimates for Solutions of Parabolic-Hyperbolic Equations with Nonlocal Boundary Conditions ... 277
V.O. Kapustyan and I.O. Pyshnograiev
17.1 Introduction ... 277
17.2 The Problem with Distributed Observation ... 278
17.2.1 Problem Statement .. 278
17.2.2 Formal Solution of the Problem ... 279
17.3 The Problem with Divided Observation .. 288
17.3.1 Problem Statement .. 288
17.3.2 Formal Solution of the Problem ... 289
References ... 296
18 **The Optimal Control Problem for Parabolic Equation with Nonlocal Boundary Conditions in Circular Sector**

V.O. Kapustyan, O.A. Kapustian, O.V. Kapustyan and O.K. Mazur

18.1 Introduction .. 297
18.2 Setting of the Problem .. 298
18.3 Some Facts from the Theory of Fourier-Bessel Series 300
18.4 Existence of Classical Solution of the Problem (18.1) with Fixed Control .. 303
18.5 The Optimal Control Problem (18.1) and (18.2) 311
18.6 Conclusions ... 314

References ... 314

19 **On the Existence of Weak Optimal Controls in the Coefficients for a Degenerate Anisotropic p-Laplacian**

Olha P. Kupenko and Günter Leugering

19.1 Introduction .. 315
19.2 Notation and Preliminaries .. 317
19.3 \mathcal{S}^N-Valued Radon Measures and Weak Convergence in Variable L^p-Spaces .. 320
19.4 Auxiliary Results .. 327
19.5 Setting of the Optimal Control Problem 330
19.6 Existence of Weak Optimal Solutions 333

References ... 336

Part IV Fundamental and Computational Mechanics

20 **Uniform Approach to Construction of Nonisothermal Models in the Theory of Constitutive Relations**

B.E. Pobedria and D.V. Georgievskii

20.1 Postulates of Continuum Mechanics 341
20.2 Ideal Liquid and Gas .. 342
20.3 Newtonian Viscous Fluid ... 345
20.4 Linear Anisotropic Elastic Solid 347

References ... 352

21 **Active Near-Wall Flow Control via a Cross Groove with Suction**

I.M. Gorban and O.V. Khomenko

21.1 Introduction .. 353
21.2 Mathematical Formulation of the Problem 355
21.3 Standing Vortex Within the Groove in the Stationary Flow ... 358
21.4 Standing Vortex in the Groove in Periodically Perturbed Flow .. 363
<table>
<thead>
<tr>
<th>21.5</th>
<th>Summary</th>
<th>366</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References</td>
<td>367</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22</th>
<th>A Numerical Study of Solitary Wave Interactions with a Bottom Step</th>
<th>369</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.M. Gorban</td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>369</td>
</tr>
<tr>
<td>22.2</td>
<td>Problem Statement</td>
<td>371</td>
</tr>
<tr>
<td>22.3</td>
<td>Numerical Method</td>
<td>373</td>
</tr>
<tr>
<td>22.3.1</td>
<td>General Principles</td>
<td>373</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Free-Surface Modeling</td>
<td>374</td>
</tr>
<tr>
<td>22.3.3</td>
<td>The Vortex Method for 2-D Flows</td>
<td>378</td>
</tr>
<tr>
<td>22.4</td>
<td>Results and Discussion</td>
<td>379</td>
</tr>
<tr>
<td>22.5</td>
<td>Conclusions</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>386</td>
</tr>
</tbody>
</table>
Continuous and Distributed Systems II
Theory and Applications
Sadovnichiy, V.A.; Zgurovsky, M. (Eds.)
2015, XXIII, 387 p. 90 illus., 50 illus. in color., Hardcover
ISBN: 978-3-319-19074-7