<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Role of Microbial Activity in Sulfide Oxidation at Dumping Sites of Sulfidic Wastes and in Abandoned Mining Areas</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Microbe–Mineral Interactions: Exploring Avenues Towards Development of a Sustainable Microbial Technology for Coal Beneficiation</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Effect of Pollution on Aquatic Microbial Diversity</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Role of Biosensors in Environmental Monitoring</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>Microbial Biosurfactant for Hydrocarbons and Heavy Metals Bioremediation</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Anaerobic Treatment of Organic Saline Waste/Wastewater: Overcome Salinity Inhibition by Addition of Compatible Solutes</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Uranium Bioremediation: Approaches and Challenges</td>
<td>119</td>
</tr>
<tr>
<td>8</td>
<td>Environmental-Microbial Biotechnology Inside Mining Operations from an Engineering Viewpoint Based on LCA</td>
<td>133</td>
</tr>
<tr>
<td>9</td>
<td>Neutrophilic Bacteria in Iron Mineral Transformation and Their Applications</td>
<td>159</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>10</td>
<td>Anaerobic Bioleaching by Acidophilic Bacterial Strains</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Sradha Singh and Swaranjit Singh Cameotra</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Microbial Processing for Valorization of Horticultural Wastes</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Sandeep K. Panda and Ramesh C. Ray</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Microbial Interaction in Mining Soil</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Smita H. Panda, Santanu Kumar Jena, Sushrireka Das, Nakulananda Mohanty, and Umaballav Mohapatra</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A Strategic Scheme for Resource Recovery from Sulfurous Industrial Wastes Through Plant–Microbe Interaction</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Sanchita Kukde and Bijaya Ketan Sarangi</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Bioconversion of Cotton Gin Waste to Bioethanol</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Shitarashmi Sahu and Krishna Pramanik</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Microalgae: Cultivation and Application</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>V. Aishvarya, J. Jena, N. Pradhan, P.K. Panda, and L.B. Sukla</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Advances in Manganese Pollution and Its Bioremediation</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>A.P. Das, S. Ghosh, S. Mohanty, and L.B. Sukla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>329</td>
</tr>
</tbody>
</table>
Environmental Microbial Biotechnology
Sukla, L.B.; Pradhan, N.; Panda, S.; Mishra, B.K. (Eds.)
2015, VIII, 338 p. 41 illus., 5 illus. in color., Hardcover
ISBN: 978-3-319-19017-4