Preface

Initial Considerations

After the publication of my book *Hadron Therapy Physics and Simulations* by Springer in 2014, I was encouraged to publish another text showing the advantages, disadvantages, and similarities between protontherapy and the carbon ion therapy. Even though no carbon ion therapy centers currently exist in the United States, a large number of protontherapy centers do. Still, the topic is timely as the installation of carbon ion therapy centers is being considered.

An international interchange was established with Japan (National Institute of Radiological Sciences, NIRS) and Germany (Heidelberg Ion Beam Therapy Center, HIT) during the 2013 Joint Symposium on Carbon Ion Radiotherapy, developed by the Department of Radiation Oncology, Mayo Clinic and research collaborations between the National Institutes of Health (NIH)/HIT and Colorado State University/NIRS. As a result, $200 million in grant funding was obtained for the installation of a carbon ion therapy center at Colorado State University and the formation of a consortium in Michigan with similar proposals. After all, carbon ion therapy was born in Berkeley and was taken to Chiba, Japan, by Japanese intern researchers from Berkeley.

The success reached with this technique drove the Germans to form HIT, with a 670 ton gantry, using the intensity-controlled raster scan method, gating, local effect models, and all the available resources in Oncology, obtaining excellence in fundamental and clinic research, in association with researchers from Gesellschaft fur Schwerionenforschung in Darmstadt. This was an absolute success, with a large research field. There are currently 15 ongoing clinical trials in protontherapy and carbon ion therapy.

Carbon ion therapy is a promising technique. Certainly, the current approaches will be obsolete in the future due to the development of experimental work committed to evolving the technique and achieving important clinical results to benefit patients with cancer. Therefore, this book provides the reader with a comparative
analysis between protontherapy and carbon ion therapy, thanks to a broad field of research and existing studies in the literature. It is our responsibility to expand on these achievements in order to save lives.

About This Book

This book compares and contrasts the approach, advantages, disadvantages, and indications for protontherapy and carbon ion therapy. To reach these conclusions, a broad search of the literature was performed, resulting in concise information presented here in five chapters.

Chapter 1 begins with a brief history of radiotherapy and types of radiation. Then, the attention is focused on cancer in a statistically comprehensive way with a global view. Conventional radiotherapy is still widely used, especially in developing countries that lack the financial resources to buy equipment for nonconventional radiotherapy. If the price of a cyclotron or synchrotron was close to a linac, no one would use conventional radiotherapy. However, South America, for example, has no nonconventional radiotherapy equipment, although a protontherapy center provided by Ion Beam Application (IBA) is being installed in Central America (Panama).

Chapter 2 analyzes the equipment and techniques with regard to conventional equipment, hybrid systems, more advanced models, and new equipment in development, such as the cyclinac, laser, and Dielectric wall accelerators (DWA). If the expected success is obtained, these developments will lead to a significant price drop, as well as more operational facilities. A hadron therapy simulation technique is also presented in this chapter.

Chapter 3 of this book focuses on biophysical and biological properties, which are fundamental in both experimental and clinical areas. Chapter 4 presents models for determining relative biological effectiveness. Finally, Chap. 5 discusses clinical experiences with carbon ions, covering the latest literature and presenting its advantages, disadvantages, similarities, and indications for therapy with carbon ions in comparison with protontherapy.

It is hoped that this book will provide the reader with the knowledge to analyze promising techniques using carbon ions, allowing you to draw your own conclusions. Much effort is required for the development of the technique, its comparative protocols, and clinical trials. In the future, even if the considerations presented in this book are deemed obsolete, it is my hope that this book has helped to establish new therapy centers for carbon ions and thus save lives.
Acknowledgments

My special thanks go to Prof. Dr. Ugo Amaldi, President of Tera Foundation, and Prof. Dr. Roberto Orecchia, Scientific Director of Centro Nazionale di Adroterapia Oncologica (CNAO) and the European Institute of Oncology, for giving me total health support during my liver cancer treatment, with excellent advice. They are great men working toward a noble cause: to save lives that would be cut short by cancer.

I thank Prof. Dr. José Alonso, a pioneer of hadron therapy, for providing me with excellent contacts and for always being concerned with my own liver cancer. He is a great man, looking for a way to save my life.

My thanks go to Prof. Dr. Thomas Haberer, Director of HIT (Heidelberg, Germany) and Massachusetts Institute of Technology (Cambridge, Mass., USA) for offering me the opportunity to receive carbon ion therapy for treating my liver cancer. I have a deep respect and admiration for him.

My sincerest gratitude to Dr. Harry Blom, Vice President of Springer, for his support, suggestions, and constructive criticism throughout this work—and for always helping me and being concerned with my health. He is a great man!

I also thank Dr. Mayra Castro for her support with the guidelines for the preparation of the manuscript to Springer—and above all things, for the dedication in helping me to provide the best work, while always being comprehensive, respectful, and an unsurpassed professional.

I want to thank Prof. Viktória Nyámadí, a Hungarian expert in quantum mechanics and mathematics, for her articles sent (which were very useful), enthusiasm, and support to my work. She is helping me to establish the first hadron therapy center in Brazil.

My many thanks to Prof. Dr. José Antônio Mansur Mendes, renowned gastro-intestinal surgeon, for his friendship and support, as well as the dissemination and acquisition of resources to deploy a hadron therapy center in Brazil, with the only purpose of saving lives with solidarity and hard work!

I thank Prof. Dr. Eugen Hug and Dr. Martin Jermann, president and secretary of Particle Therapy Co-Operative Group (PTCOG), respectively, for the acceptance of my membership and permission to use the table about particle therapy patient statistics.

Prof. Dr. Angela Bracco, Nuclear Physics European Collaboration Committee (NuPECC) Chair, showed me how pleasant a permission request can be, to use of figures and tables in my work without filling lengthy forms or requiring much time and energy—all done in a simple, direct, and pleasant way. My gratitude goes to her.

To Ion Beam Applications (IBA) goes my thanks for the permission to use figures and tables on the Cyclotron C400 and compact gantry. I also appreciate the collaboration with the implementation of a hadron therapy center in Brazil, providing us all the necessary guidance through Mr. Mauro Ferreira, Vice President of Sales of the IBA—this was very useful for our work.

My thanks to CERN (European Council for Nuclear Research); Elsevier and Copyright Clearance Center; John Wiley and Sons and Copyright Clearance Center;
Oxford University Press; National Institute of Radiological Sciences (NIRS); Centre National D’Hadrontherapiue par ions carbone; Dr. Nicolas Gaudin Head, Communications Group da International Agency for Research on Cancer, World Health Organization; Prof. Dr. Wolfgang Kurt Hermann “Pief” Panofsky (in memoriam, April 24, 1919–September 24, 2007); Prof. Dr. Hans-H.Braun; Prof. Dr. Hywel Owen, David Holder, Ranald Mackay; Prof. Dr. Lukas Opalka; Prof. Dr. Wilma Kraft Weyrather; Prof. Dr. Daniel Cussol; Prof. Dr. Thomas Friedrich; Prof. Dr. M. Scholz; and Prof. Dr. Gerhard Kraft, for permission to use figures and tables.

Finally, thanks go to Miss Michele Delbon for her translation work.

Ribeirão Preto, São Paulo, Brazil

Marcos d’Ávila Nunes
Protontherapy Versus Carbon Ion Therapy
Advantages, Disadvantages and Similarities
Nunes, M.d.
2015, XX, 110 p. 71 illus., 16 illus. in color., Hardcover
ISBN: 978-3-319-18982-6