This book develops ways of processing linguistic expressions to return what can be
described as meanings. The linguistic expressions are from a series of related
formal languages that capture properties of natural language in a controlled and
systematic fashion. They also offer a wide perspective on natural language that is
cross-linguistic by nature. While examples are related to the English language,
applicability is expected to carry over to other natural languages, unless explicitly
noted otherwise.

Much of this book involves presenting formal machinery and then working
through consequences. Motivation is found with finding methods that are flexible
but constrained to support processing structures close to expected conventional
parsings of natural language. To help, computer programs are used to provide
“hands on” experience. In fact, the formal definitions are already executable
computer programs of the programming language Standard ML.

Having its origins as a meta-language for defining proof tactics in interactive
theorem provers, Standard ML provides an excellent choice for implementing
linguistic theories. Standard ML is a (mostly) functional language and so provides
notation and concepts that are similar to those of mathematics, so much so that the
programs of this book are written in a manner nearly identical to the formal
mathematical spelling out of the theory, only with the advantage of being quite
literally brought to life. While written for clarity rather than efficiency, the programs
cope well with large-sized examples. Their simplicity makes them an ideal vehicle
for further developments, and the reader is encouraged to experiment with them.
They are available on the Internet at http://www.compling.jp.

The book is structured as follows:

Chapter 1 introduces predicate languages that are the basis for the formalization
of linguistic expressions considered in this book. Preparing the ground for the rest
of the book, this chapter defines syntactic trees enriched with the concepts of
binding and scope, as well as some associated routines for gathering information,
pretty-printing, and post-processing. The chapter also introduces the model theo-
retic semantics of first-order predicate logic, presenting models, assignments, and a
Tarskian satisfaction relation.
The remaining chapters focus on developing the evaluation techniques that underlie the definition of satisfaction, only with limitation to the aim of realizing mechanisms for returning predicate language expressions as representations of meanings derived by evaluation from inputs that are ultimately conventional phrase structure parsings of natural language.

Specifically, Chap. 2 adds an \texttt{if} conditional to a recursive routine for evaluating expressions against an assignment function that stores accumulated binding information. Assignments are considered that assign sequences as values, so what is evaluated can be selected based on tests regarding lengths of assigned sequences. This allows for a robust interpretation of unknown lexical items and for feeding an automated regulation of binding information to leave little need for explicitly coding dependencies.

Chapter 3 develops utilizing the assignment as a source of information about the content of the expression under evaluation, with assignments governing where dependencies are located throughout an evaluation. This is achieved with a language that includes fine grained and often interdependent primitive operations of scope manipulation to support processing structures close to expected conventional parsings of natural language.

Chapter 4 describes and illustrates treebank annotation that with modest conversion serves as a syntactic base for feeding the evaluation mechanism of Chap. 3. This achieves a very broad coverage, with examples of passives, adverbial clauses, participial clauses, adjectives, adverbs, floating quantifiers, pronominal binding, covaluation arising because of embedding, wh-questions, relative clauses, free relative clauses, comparative clauses, tough movement complements, clause-adjoined relative clauses, phrasal conjunction, speech parentheticals, and nouns of address.

For readers not familiar with Standard ML, a concise summary of the core of the language is provided as an appendix.

This book emerged as output from a project under the Japan Science and Technology Agency (JST) PRESTO Sakigake program in the research area *Synthesis of Knowledge for Information Oriented Society* (2010–2014). Being part of this was an incredible experience and privilege. I thank Hideyuki Nakashima and Hideki Asou and other advisors for their support, supervision, and encouragement. While writing this book I received help and motivation from many people, including Daisuke Bekki, Yasuko Butler, Tsaiwei Fang, Shota Hiyama, Natsuha Katakura, Tomoya Kosuge, Loh Boon Liang, Pascual Martinez-Gomez, Koji Mineshima, Masaaki Nagata, Chidori Nakamura, Prashant Pardeshi, Takumi Toda, and Zhen Zhou, as well as the insightful comments of two anonymous reviewers, all of which I gratefully acknowledge. I also thank Federica Corradi Dell’Acqua for her guiding editorship. I am hugely indebted to Paul Dekker whose clarity of mechanism and vision I dare to hope rubbed off into this work. And most of all I thank Kei Yoshimoto, as collaborator on overlapping work, and the force of optimism and opportunity carrying this work to completion.

Sendai
January 2015

Alastair Butler
Linguistic Expressions and Semantic Processing
A Practical Approach
Butler, A.
2015, VIII, 172 p. 4 illus., Hardcover
ISBN: 978-3-319-18829-4