Contents

1 Introduction .. 1
 1.1 The Galaxy ... 1
 1.2 Dark Matter .. 2
 1.3 Galactic Surveys .. 4
 1.4 Dynamics ... 5
 1.4.1 Angle-Action Coordinates 6
 1.4.2 Angle-Action Coordinates in Galactic Dynamics 6
 1.5 Dynamical Modelling of the Galaxy 7
 1.6 Tidal Streams .. 9
 1.6.1 Constraining the Galactic Potential
 with Tidal Streams 10
 1.7 Overview of Thesis 11
 1.7.1 Angle-Action Estimation in a General
 Axisymmetric Potential 12
 1.7.2 Actions, Angles and Frequencies
 from Numerically Integrated Orbits 12
 1.7.3 Action Estimation Using a Triaxial Stäckel
 Approximation 13
 1.7.4 Stream-Orbit Misalignment 13
 1.7.5 Stream Modelling in Angle-Frequency Space 14
 1.7.6 Determining the Velocity Dispersion
 of the Thick Disc 14
 1.7.7 Extended Distribution Functions
 for the Galactic Disc 14
 References .. 15

2 Angle-Action Estimation in a General Axisymmetric Potential 19
 2.1 Introduction .. 19
 2.1.1 Angle-Action Variables 20
 2.2 Actions and Angles in a Stäckel Potential 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Estimating Actions in a Fitted Stäckel Potential</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Procedure</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Discussion</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Application</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Geneva-Copenhagen Survey</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Prolate Axisymmetric Potentials</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Polar Adiabatic Approximation</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Ellipsoidal Adiabatic Approximation</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Axisymmetric Stäckel Fudge</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Iterative Torus Machine</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Method Comparison</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.8.1 Total Angular Momentum</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.8.2 Single Torus</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.8.3 Multiple Tori</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.8.4 Computational Cost</td>
<td>53</td>
</tr>
<tr>
<td>2.9</td>
<td>Conclusions</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>2.9.1 Future Work</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Actions, Angles and Frequencies from Numerically Integrated Orbits</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Formalism</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Toy Potentials</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Generating Function</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Choice of N_T, N_{max} and T</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Example</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Accuracy of the Method</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3.3.2 Near-Resonant Orbit</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Application</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>3.4.1 An Example Orbit</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>3.4.2 A Typical Constant Energy Surface</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>Discussion</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3.5.1 Relation to Previous Work</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3.5.2 Possibility of Using Stäckel Tori</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>3.5.3 Resonances and Chaos</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>3.6.1 Future Work</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>82</td>
</tr>
</tbody>
</table>
4 Action Estimation Using a Triaxial Stäckel Approximation 85
 4.1 Introduction .. 85
 4.2 Triaxial Stäckel Potentials 86
 4.2.1 Ellipsoidal Coordinates 86
 4.2.2 Stäckel Potentials 88
 4.3 Triaxial Stäckel Fudge 89
 4.3.1 Relation to Axisymmetric Case 91
 4.4 Tests ... 93
 4.4.1 Selection of Coordinate System 93
 4.5 Accuracy .. 96
 4.5.1 Surfaces of Section 100
 4.6 A Triaxial Model with Specified DF 101
 4.6.1 Normalization ... 102
 4.6.2 The Jeans Equation 103
 4.7 Conclusions ... 105
 4.7.1 Future Work ... 106
References .. 107

5 Stream-Orbit Misalignment .. 109
 5.1 Introduction ... 109
 5.2 Known Streams .. 110
 5.2.1 GD-1 ... 111
 5.2.2 Orphan ... 111
 5.2.3 Anticenter ... 111
 5.2.4 NGC 5466 .. 112
 5.2.5 Palomar 5 .. 112
 5.2.6 Sagittarius ... 112
 5.2.7 Acheron, Cocytos, Lethe and Styx 113
 5.2.8 Aquarius ... 113
 5.2.9 Cetus, Virgo and Triangulum 113
 5.3 Tidal Streams in Angle-Action Coordinates 114
 5.4 The Problem with Orbit-Fitting 116
 5.4.1 Known Streams ... 120
 5.5 Mass Dependence .. 121
 5.6 Anisotropies in the Action Distribution 126
 5.7 Errors in Potential Parameters 128
 5.8 Conclusions ... 131
 5.8.1 Future Work ... 132
References .. 133

6 Stream Modelling in Angle-Frequency Space 135
 6.1 Streams in Angle-Action Space 137
 6.1.1 A Simulation .. 137
7 Determining the Velocity Dispersion of the Thick Disc 171
7.1 Introduction .. 171
7.2 Probability Plot Method 172
7.3 Dynamical Galaxy Models. 174
7.4 MB Method ... 178
7.5 Errors .. 179
7.5.1 Observational Errors 179
7.5.2 Poisson Noise and Systematics 180
7.6 Comparison with Other Work 182
7.7 Conclusions ... 184
References .. 185

8 Extended Distribution Functions for the Galactic Disc 187
8.1 Introduction ... 187
8.2 Model .. 189
8.2.1 ISM Metallicity ... 189
8.2.2 Extended Distribution Function 190
8.2.3 Full DF Evolution with a 3D Action-Space Kernel 192
8.2.4 Performing the Integrals 193
8.2.5 Halo EDF ... 194
8.3 Data .. 195
8.3.1 Geneva-Copenhagen Survey 195
8.3.2 SEGUE G dwarfs .. 196
8.3.3 Gilmore-Reid Density Curve 197
Appendix E: Angles and Frequencies from Stäckel Fudge 241
Appendix F: A Family of Two-Parameter Potentials 245
Appendix G: Finding Angles and Frequencies for Stream Particles 251
Appendix H: EDF Normalization ... 255
Appendix I: Markov Chain Monte Carlo EDF Parameter Search 257
Curriculum Vitae ... 261
Dynamics of the Milky Way
Tidal Streams and Extended Distribution Functions for the Galactic Disc
Sanders, J.
2015, XXII, 264 p. 85 illus., 35 illus. in color., Hardcover
ISBN: 978-3-319-18771-6