# Contents

Preface v

Introduction 1

1 Basic modular distributions 7
  1.1 Eisenstein distributions ..................................... 8
  1.2 Hecke distributions .......................................... 19

2 From the plane to the half-plane 27
  2.1 Modular distributions and non-holomorphic modular forms .... 28
  2.2 Bihomogeneous functions and joint eigenfunctions of \((\Delta, \text{Eul}^\Pi)\) 37
  2.3 A class of automorphic functions .............................. 44

3 A short introduction to the Weyl calculus 51
  3.1 An introduction to the Weyl calculus limited to essentials 52
  3.2 Spectral decompositions in \(L^2(\mathbb{R}^2)\) and \(L^2(\Pi)\) 59
  3.3 The sharp composition of homogeneous functions .......... 72
  3.4 When the Weyl calculus falls short of doing the job ....... 79

4 Composition of joint eigenfunctions of \(\mathcal{E}\) and \(\xi \frac{\partial}{\partial x}\) 83
  4.1 Estimates of sharp products \(h_{\nu_1,q_1} \# h_{\nu_2,q_2}\) .... 84
  4.2 Improving the estimates ..................................... 91
  4.3 A regularization argument .................................... 98
  4.4 Computing an elementary integral ............................ 100
  4.5 The sharp product of joint eigenfunctions of \(\mathcal{E}, \xi \frac{\partial}{\partial x}\) 105
  4.6 Transferring a sharp product \(h_{\nu_1,q_1} \# h_{\nu_2,q_2}\) to the half-plane 115

5 The sharp composition of modular distributions 123
  5.1 The decomposition of automorphic distributions .......... 124
  5.2 On the product or Poisson bracket of two Hecke eigenforms 134
  5.3 The sharp product of two Hecke distributions ............... 142
  5.4 The case of two Eisenstein distributions ................... 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The operator with symbol $\mathcal{E}_\nu$</td>
<td>169</td>
</tr>
<tr>
<td>6.1</td>
<td>Extending the validity of the spectral decomposition of a sharp product</td>
<td>169</td>
</tr>
<tr>
<td>6.2</td>
<td>The odd-odd part of $\text{Op}(\mathcal{E}_\nu)$ when $</td>
<td>\text{Re } \nu</td>
</tr>
<tr>
<td>6.3</td>
<td>The harmonic oscillator</td>
<td>172</td>
</tr>
<tr>
<td>6.4</td>
<td>The square of zeta on the critical line; non-critical zeros</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>From non-holomorphic to holomorphic modular forms</td>
<td>183</td>
</tr>
<tr>
<td>7.1</td>
<td>Quantization theory and composition formulas</td>
<td>184</td>
</tr>
<tr>
<td>7.2</td>
<td>Anaplectic representation and pseudodifferential analysis</td>
<td>189</td>
</tr>
</tbody>
</table>

Bibliography | 197 |

Index | 201 |
Pseudodifferential Operators with Automorphic Symbols
Unterberger, A.
2015, X, 202 p., Softcover
ISBN: 978-3-319-18656-6
A product of Birkhäuser Basel