Contents

1 Silicon Nanowires: Fabrication and Applications 1
 Thomas Mikolajick and Walter M. Weber
 1.1 Introduction ... 1
 1.2 Fabrication Techniques for Silicon Nanowires 2
 1.3 Electron Devices Based on Silicon Nanowires 8
 1.4 Silicon Nanowire Based Sensors ... 14
 1.5 Silicon Nanowire Based Solar Cells and Anodes for Li-Ion Batteries ... 16
 1.6 Summary ... 17
 References ... 18

2 Methods and Structures for Self-assembly of Anisotropic 1D Nanocrystals ... 27
 Shuang-Yuan Zhang, Kwok Wei Shah and Ming-Yong Han
 2.1 Introduction ... 28
 2.2 Self-assembly Methods ... 29
 2.2.1 Self-assembly on Substrates ... 30
 2.2.1.1 Evaporation-Mediated Assembly ... 30
 2.2.1.2 Electric-Field-Assisted Assembly ... 32
 2.2.1.3 Template-Assisted Assembly ... 35
 2.2.2 Self-assembly at Interfaces ... 37
 2.2.3 Self-assembly in Solutions ... 39
 2.3 Self-assembly Packing Structures ... 42
 2.3.1 Non-close-Packed Structures ... 42
 2.3.2 Close-Packed Monolayers ... 45
 2.3.2.1 Horizontal Alignment ... 45
 2.3.2.2 Vertical Alignment ... 49
 2.3.3 Close-Packed Multilayers ... 51
 2.3.3.1 Nematic Alignment ... 51
 2.3.3.2 Smectic Alignment ... 53

vii
3 Anisotropic Gold Nanoparticles: Preparation, Properties, and Applications 69
Chenming Xue and Quan Li
3.1 Introduction .. 69
3.2 Methods and Techniques for Synthesis of Anisotropic Gold Nanoparticles 72
3.2.1 Top-Down Method 72
3.2.2 Bottom-Up Method 73
3.2.3 Other Methods .. 76
3.2.3.1 Photochemistry 76
3.2.3.2 Electrochemistry 77
3.2.3.3 Sonochemistry 77
3.2.3.4 Template .. 77
3.2.3.5 Galvanic Replacement 78
3.2.4 Other Shapes of Anisotropic AuNPs 78
3.2.4.1 One-Dimensional (1D) AuNPs 78
3.2.4.2 Two-Dimensional (2D) AuNPs 79
3.2.4.3 Three-Dimensional (3D) AuNPs 80
3.3 Properties ... 85
3.3.1 Morphology .. 85
3.3.2 Optical and Photothermal Property 85
3.3.3 Surface Enhanced Raman Scattering (SERS) 87
3.3.4 Fluorescence Enhancement and Quenching 88
3.3.5 Toxicology .. 89
3.3.6 Surface Modification 90
3.3.7 Supramolecular Organizations (Self-assembly and Alignment) 92
3.4 Applications .. 94
3.4.1 Catalytic Application 94
3.4.2 Sensors and Molecular Recognition 94
3.4.3 Nanoelectrodes .. 96
3.4.4 Biomedical Applications: Imaging, Diagnostics and Therapy 96
3.4.4.1 Imaging .. 96
3.4.4.2 Photothermal Therapy 98
3.4.4.3 Drug and Gene Delivery 99
3.4.5 Optical Tuning .. 102
3.5 Conclusions and Outlook 105
References .. 106
4 Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires

Pornthip Tongying, Maksym Zhukovskyi and Masaru Kuno

4.1 Introduction

4.2 Synthesis of II–VI and IV–VI Nanowires (NWs)

4.2.1 Solution-Liquid-Solid (SLS) Growth

4.2.1.1 Synthesis of Group II–VI NWs [CdE (E = S, Se, Te) and ZnE (E = Se, Te)]

4.2.1.2 Synthesis of CdSe NWs

4.2.1.3 NW Diameter Control

4.2.1.4 NW Branching

4.2.1.5 Synthesis of Group IV–VI NWs (PbS, PbSe, and PbSe$_x$S$_{1-x}$)

4.2.1.6 Use of Single Source Precursors

4.2.2 Synthesis of Core/Shell Semiconductor NWs

4.2.2.1 Examples of Core/Shell NWs

4.2.3 Hybrid Metal Nanoparticle Decorated NWs

4.2.3.1 Examples of Hybrid Metal Nanoparticle Decorated Semiconductor NWs

4.3 Applications of Semiconductor Nanowires

4.3.1 NW Assembly

4.3.2 NW Barcodes

4.3.3 NW-Based Photodetectors

4.3.4 NW Solar Cells

4.3.5 NW-Based Photocatalysts for Hydrogen Generation

4.4 Conclusions and Outlook

References

5 Rare Earth Based Anisotropic Nanomaterials: Synthesis, Assembly, and Applications

Chun-Hua Yan, Ling-Dong Sun, Chao Zhang, Chun-Jiang Jia, Guang-Ming Lyu, Hao Dong, Xiao-Yu Zheng, Yan-Jie Wang, Shuo Shi, Pei-Zhi Zhang and Lin-Dong Li

5.1 Crystal Structures of Rare Earth Compounds

5.1.1 Rare Earth Oxides

5.1.2 Rare Earth Fluorides

5.1.3 Rare Earth Complex Fluorides

5.1.4 Rare Earth Oxyhalides

5.1.5 Rare Earth Phosphates and Vanadates

5.2 Synthesis, Assembly of Rare Earth Based Anisotropic Nanomaterials

5.2.1 One-Dimensional (1D) Nanostructures

5.2.2 Two-Dimensional (2D) Nanostructures
5.3 Applications of Rare Earth Based Anisotropic Nanomaterials

5.3.1 Luminescence Properties and Optical Applications

5.3.1.1 General Introduction of the Luminescence Properties of Rare Earths

5.3.1.2 Photon Upconversion in Rare Earth Anisotropic Nanostructures

5.3.1.3 Optical Applications

5.3.2 Magnetic Properties and MRI Applications of Anisotropic Rare Earth Nanostructures

5.3.2.1 Gd-Based Anisotropic Nanostructures as MRI CAs

5.3.2.2 Ln³⁺(Other Than Gd³⁺)-Based Anisotropic Nanostructures as MRI CAs

5.3.3 Catalytic Application of Rare Earth Anisotropic Nanostructures

5.3.3.1 Basic Properties of Ceria Nanocrystals

5.3.3.2 Catalysis for CO Oxidation

5.3.3.3 Photocatalysis

5.3.3.4 Catalysis of Organic Chemistry Reactions

5.3.3.5 Catalysis for Anti-oxidation

5.3.3.6 Other Applications

5.4 Perspective

References

6 Liquid Crystalline Anisotropic Nanoparticles: From Metallic and Semiconducting Nanoparticles to Carbon Nanomaterials

Hari Krishna Bisoyi and Quan Li

6.1 Introduction

6.2 Liquid Crystals of One Dimensional (1D) Nanoparticles

6.2.1 Liquid Crystalline Nanorods

6.2.2 Liquid Crystalline Carbon Nanotubes

6.3 Liquid Crystals of Two-Dimensional (2D) Nanoparticles

6.3.1 Liquid Crystalline Nanodiscs

6.3.2 Liquid Crystalline Graphene Derivatives

6.4 Conclusions and Outlook

References

7 Self-assembled 1D Semiconductors: Liquid Crystalline Columnar Phase

Manoj Mathews, Ammathnadu S. Achalkumar and Quan Li

7.1 Introduction

7.2 Liquid Crystalline (LC) Semiconductors

7.3 Discotic Columnar Liquid Crystalline Semiconductors
7.4 Discotic Liquid Crystals with High Charge-Carrier Mobility

7.4.1 p-Type Discotic Molecules

7.4.2 n-Type Discotic Molecules

7.4.3 p-n Type Dyad Discotic Molecules

7.5 Alignment of Discotic Columnar Phase

7.5.1 Alignment Control of Columnar Phase Through Molecular Design

7.5.2 Alignment Control of Columnar Phase Through Physical Methods

7.5.2.1 Surface Treatment

7.5.2.2 Langmuir–Blodgett (LB) Deposition

7.5.2.3 Templating from Self-assembled Monolayers

7.5.2.4 Zone Casting and Zone Crystallization

7.5.2.5 Application of Electric Field and Magnetic Field

7.5.2.6 Application of IR Irradiation

7.5.2.7 Alignment in Pores and Channels

7.6 Applications of Discotic Columnar Semiconductors

7.7 Conclusions and Outlook

References

8 Directed Assembly and Self-organization of Metal Nanoparticles in Two and Three Dimensions

S. Holger Eichhorn and Jonathan K. Yu

8.1 Introduction

8.2 Langmuir-Blodgett Films of Metal Nanoparticles (MNPs)

8.2.1 Introduction

8.2.2 LB-Films of MNPs Protected by Alkylamine and Alkythiolate Ligands

8.2.3 LB-Films of MNPs Containing Polar Ligands

8.2.4 LB-Films of MNPs Protected by Ionic Surfactants

8.2.5 L- and LB-Films of MNPs Protected by Polymers

8.2.6 L- and LB-Films of Magnetic MNPs

8.2.7 LB Multilayers of MNPs

8.3 Layer-by-Layer Deposition of Metal Nanoparticles

8.3.1 Introduction

8.3.2 LbL Deposition of Ionic MNPs

8.3.3 LbL Deposition of Neutral MNPs Based on H- and Covalent Bonds as Well as Other Non-ionic Interactions

8.4 Self-organizing Metal Nanoparticles

8.4.1 LC MNPs with One Type of Ligand
9 Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal .. 337
Tsung-Hsien Lin, Chun-Wei Chen and Quan Li

9.1 Introduction .. 337
9.2 Formation of Blue Phase (BP) 338
9.3 Expansion of Temperature Range of BPs 342
9.4 Photonic Crystal Structure and Lattice Orientation 345
9.5 Phase Identification of BP 348
9.6 Control of BP Photonic Bandgap 351
9.7 Optical Isotropy and Fast Electro-Optic Response 358
9.8 Nonlinear Optical Response of BPs 366
9.9 Conclusions and Outlook 371
References ... 372

10 Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems 379
Changhong Ke and Xiaoming Chen

10.1 Introduction .. 379
10.2 Overview of 1D and 2D Nanostructures 380
10.3 Overview of Nanoscale Adhesion Interactions 383
10.4 Theoretical and Experimental Studies of Nanoscale Adhesion Interactions 385
10.4.1 Binding Interaction Between Nanostructures 385
10.4.2 Adhesion Interaction Between Nanostructures and Flat Surfaces 394
10.4.3 Interfacial Interaction Between Nanostructures and Polymer Matrices 406
10.5 Conclusions and Outlook 416
References ... 416

11 Mesoporous Carbon for Energy 425
Pengfei Zhang and Sheng Dai

11.1 Introduction .. 425
11.2 Ordered Mesoporous Carbons (OMCs) from Hard-Templating Method 426
11.3 Ordered Mesoporous Carbons from Soft-Templating Method 430
11.4 Ordered Mesoporous Carbons for Supercapacitor .. 437
11.5 Summary .. 443
References ... 444
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Hyperbolic Metamaterials: Design, Fabrication, and Applications of Ultra-Anisotropic Nanomaterials</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Kandammathe Valiyaveedu Sreekanth, Antonio De Luca and Giuseppe Strangi</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>448</td>
</tr>
<tr>
<td>12.2</td>
<td>Design and Fabrication of Grating Coupled Anisotropic Hyperbolic Metamaterials</td>
<td>450</td>
</tr>
<tr>
<td>12.3</td>
<td>Experimental Results and Discussion</td>
<td>452</td>
</tr>
<tr>
<td>12.4</td>
<td>Numerical Simulation</td>
<td>461</td>
</tr>
<tr>
<td>12.5</td>
<td>Applications</td>
<td>464</td>
</tr>
<tr>
<td>12.6</td>
<td>Summary</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>466</td>
</tr>
<tr>
<td>13</td>
<td>Printed Anisotropic Molecular Alignments</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Munehiro Kimura</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Necessity of Controlling Molecular Alignment and Demand for Printing Techniques</td>
<td>469</td>
</tr>
<tr>
<td>13.2</td>
<td>LC Alignment by Means of an Alignment Film</td>
<td>470</td>
</tr>
<tr>
<td>13.3</td>
<td>Surface Memory Effect</td>
<td>472</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Alignment Transcription Method</td>
<td>473</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Polymerization of a UV-Curable Reactive Mesogen Monomer at the Surface</td>
<td>474</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Flow-Coating Method</td>
<td>475</td>
</tr>
<tr>
<td>13.4</td>
<td>Printing Methods</td>
<td>476</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Gravure-Coating Method</td>
<td>476</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Slit-Coater Method</td>
<td>478</td>
</tr>
<tr>
<td>13.5</td>
<td>Future Applications of the Printing Method</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>492</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>495</td>
</tr>
</tbody>
</table>
Anisotropic Nanomaterials
Preparation, Properties, and Applications
Li, Q. (Ed.)
2015, XVII, 500 p. 277 illus., 36 illus. in color.,
Hardcover
ISBN: 978-3-319-18292-6