Contents

1 Historical Introduction: The Telescope and Its Remarkable Contribution to Scientific Discovery

1. Historical Introduction: The Telescope and Its Remarkable Contribution to Scientific Discovery 1

2 Introduction

1. Kolmogorov Theory .. 15
2. Alternative Theoretical Approach 24
3. Caution Regarding Quantities and Functions Used to Create Illustrative Plots and Figures 29
4. Caution Regarding Quantities and Functions Used to Create Illustrative Plots and Figures 30
5. References .. 32

3 Terms, Definitions, and Theoretical Foundations

1. Air Refractive Index .. 33
2. Point-Objects ... 46
3. The Electromagnetic Spectrum 46
4. Quasi-monochromatic Light 48
5. Amplitude and Phase of Light Waves Disrupted by Turbulence .. 48
6. The Atmosphere Considered as a Stochastic Process 50
7. Spatial and Temporal Stationarity and the Ensemble Average 51

3.1 Air Refractive Index

1. Air Refractive Index .. 34
2. Air Temperature and Altitude 35
3. Air Pressure and Altitude 35
4. Integrated Optical Path Difference Over the Entire Atmospheric Depth .. 37
5. Effect of Humidity ... 38
6. Effect of Dispersion .. 38
7. Random Variables Associated with Atmospheric Turbulence .. 39
8. Astronomical Refraction 42
9. Atmospheric Extinction 44

3.2 Point-Objects

1. Point-Objects ... 46

3.3 The Electromagnetic Spectrum

1. The Electromagnetic Spectrum 46

3.4 Quasi-monochromatic Light

1. Quasi-monochromatic Light 48

3.5 Amplitude and Phase of Light Waves Disrupted by Turbulence

1. Amplitude and Phase of Light Waves Disrupted by Turbulence .. 48

3.6 The Atmosphere Considered as a Stochastic Process

1. The Atmosphere Considered as a Stochastic Process ... 50
2. Spatial and Temporal Stationarity and the Ensemble Average 51
3.6.2 Standard Error and Standard Deviation 52
3.6.3 Autocovariance and Autocorrelation Functions, the Variance, and rms .. 52
3.6.4 The Atmospheric Refractive Index Field 53

3.7 Scalar Diffraction Theory ... 54
3.7.1 Scalar Diffraction Theory Applied to Atmospheric Propagation ... 55
3.7.2 Scalar Diffraction Theory Applied to Telescope Imaging ... 55
3.7.3 Monochromatic Light Fields 56
3.7.4 Analytic Signal ... 57
3.7.5 Complex Amplitude .. 57
3.7.6 Intensity ... 58
3.7.7 Irradiance ... 58
3.7.8 Polychromatic Light Fields 59

3.8 Coherence Terminology ... 59

3.9 Free-Space Propagation .. 60
3.9.1 Maxwell’s Electromagnetic Wave Equations 61
3.9.2 Helmholtz Equation .. 63
3.9.3 Solutions for Infinitely Extensive Plane Waves 63

3.10 Mathematical Notations and Quantity Dimensions 64

References ... 66

4 Diffraction ... 67
4.1 Diffraction by an Aperture ... 68
4.1.1 Fresnel Number ... 69
4.1.2 Fresnel–Kirchhoff Diffraction Formula 70
4.1.3 Fresnel Near-Field Diffraction 71
4.1.4 Stationary Phase .. 72
4.1.5 Fraunhofer Far-Field Diffraction 73

4.2 Optical System Terminology .. 74
4.2.1 Telescopes, Telescope Objectives, and Eyepieces 74
4.2.2 Aperture Stops, Pupils, Conjugate Distances, Focal Lengths, and F/Numbers ... 76
4.2.3 Light Rays and Ray Terminology 77
4.2.4 Objects at Finite Distances 78
4.2.5 Objects at Infinite Distances 79
4.2.6 Pupil Functions ... 79

4.3 The Amplitude Point Spread Function 81
4.3.1 For Diffraction-Limited Telescopes with Circular Apertures ... 81

4.4 The Intensity Point Spread Function 82
4.4.1 The Airy Pattern .. 82
4.5 Strehl Intensity ... 83
4.5.1 Expressed in Terms of rms Wavefront Error 84
4.5.2 For Circularly Symmetric Images 84
4.6 Rayleigh Resolution Criterion 85
4.7 Images of Extended Objects 86
4.7.1 Superposition Property 86
4.7.2 Nonlinear Optical Phenomena 86
4.7.3 Isoplanaticity .. 87
4.7.4 Convolution Integrals 87
4.7.5 Images of Coherently Illuminated
 Extended Objects .. 88
4.7.6 Images of Incoherently Illuminated
 Extended Objects .. 89
4.7.7 Images of Partially Coherently Illuminated
 Extended Objects .. 89
4.8 Images of Two-Point Objects 89
4.8.1 Incoherently Illuminated Two-Point Objects 91
4.8.2 Coherently Illuminated Two-Point Objects 91
4.9 Stellar Speckle Patterns 92
4.10 Effect of Central Obstruction on Telescope Point
 Spread Functions ... 93
4.11 Mathematical Notation Used in This Chapter 94
References ... 95

5 Wave Propagation After Scattering by a Thin
 Atmospheric Layer ... 97
 5.1 Characterizing Atmospheric Paths and Telescopes
 by MTFs and OTFs 99
 5.2 The Atmospheric Refractive Index 100
 5.3 Wave Propagation in the Geometrical Optics Region 100
 5.3.1 Optical Path Difference 101
 5.3.2 Phase Angle of the Exiting Wave 102
 5.3.3 Complex Amplitude of the Exiting Wave 103
 5.3.4 The Two-Point Two-Wavelength Correlation
 Function for Exiting Waves 104
 5.3.5 Complex Coherence Factor for Exiting Waves 105
 5.3.6 Illustrative Plots of the Complex
 Coherence Factor 106
 5.3.7 Illustrative Plots of the Two-Point
 Two-Wavelength Correlation Function 107
 5.4 Near-Field Propagation of the Complex Amplitude 108
5.5 Near-Field Propagation of the Two-Point Two-Wavelength Correlation Function ... 109
5.5.1 Cases Where the Function Conserves 111
5.5.2 General Case of Non-conservation of the Function .. 113
5.6 Near-Field Propagation of the Complex Coherence Factor ... 116
5.7 Development of Scintillation After Light Scattering by a Thin Layer ... 117
5.7.1 Dependence of Scintillation on Turbulence Scale Sizes in the Layer 117
5.7.2 Dependence of Scintillation on the Various Controlling Parameters 120
5.7.3 Effective Fresnel Numbers for Atmospheric Paths ... 123
5.8 Mathematical Notation Used in This Chapter 128
References ... 129

6 Wave Propagation Over Extended Atmospheric Paths 131
6.1 Atmospheric MTF Expressions Developed by Hufnagel and Stanley ... 133
6.1.1 Hufnagel and Stanley’s General Expression for the Atmospheric MTF ... 134
6.1.2 Hufnagel and Stanley’s Kolmogorov-Based Expression for the Atmospheric MTF ... 135
6.2 Layered Model Representations of Extended Atmospheric Paths ... 143
6.2.1 Two Equivalent Random Phase Screen Atmospheric Path Models ... 146
6.2.2 Properties of the Phase Screens in the Uncorrelated Random Phase Screen Path Model ... 151
6.2.3 Effect of Individual Random Phase Screens on Transmitted Light Waves ... 157
6.3 General Expression for the Two-Point Two-Wavelength Correlation Function ... 157
6.3.1 Case of Isotropic Turbulence ... 163
6.3.2 The Functional Form When $\rho(\xi, \eta)$ Is Gaussian ... 163
6.4 General Expression for the Atmospheric MTF ... 165
6.4.1 Case of Isotropic Turbulence ... 165
6.4.2 Functional Forms When $\rho(\xi, \eta)$ Is Gaussian ... 165
6.4.3 Comparison of the General Expression to that of Hufnagel and Stanley ... 166
7.8.3 Two-Wavelength Correlation Function of the Intensity at a Single Point in the Image 195
7.8.4 Two-Wavelength Correlation Function of the Complex Amplitude at a Single Point in the Image 196
7.9 OTF for an Entire End-to-End Imaging Path 198
7.10 OTF for an Entire End-to-End Imaging Path for Space Telescopes .. 198
7.10.1 OTF and Intensity PSF for a Diffraction-Limited Telescope with Circular Aperture 199
7.11 Mathematical Notation Used in This Chapter 199

8 Atmospheric Path Characterization 201
8.1 Obtaining the Atmospheric MTF from a Point-Object Image .. 203
8.1.1 For the Case of a Large Diffraction-Limited Telescope .. 203
8.1.2 Long- and Short-Exposure Atmospheric MTFs 204
8.1.3 Effective End-to-End OTF for a Telescope Equipped with Adaptive Optics 205
8.1.4 Atmospheric MTF Plots and Corresponding Intensity Envelopes .. 206
8.2 Measurement of the rms OPD Fluctuation 206
8.2.1 Measurement for the Case $\sigma/\lambda \geq 0.4$ Using Two Narrowband Filters 206
8.2.2 Measurement for the Case $\sigma/\lambda \geq 0.4$ Using a Broadband Filter 209
8.2.3 Actual Field Measurements of σ 213
8.2.4 Influence of Telescope Aberrations on the Measured σ Values 216
8.2.5 Convergence of σ as $\lambda_2 \rightarrow \lambda_1$ 216
8.2.6 Measurement of σ for the Case $\sigma/\lambda < 0.4$ 217
8.2.7 Measurement of Residual OPD Fluctuation for an AO-Equipped Telescope 218
8.2.8 Dependence of σ on Zenith Angle 219
8.3 Obtaining the Autocorrelation Function of the OPD Fluctuation 219
8.3.1 Obtaining the Function for an AO-equipped Telescope 221
8.3.2 Significance of the Average Turbulence Structure Size 221
8.3.3 Path Characterization During Daytime 224
8.4 The Wavefront Structure Function ... 224
 8.4.1 Wavefront Structure Function for Isotropic Turbulence 224
 8.4.2 Wavefront Structure Function for AO-Equipped Telescopes 225
8.5 Refractive Index Structure Function .. 225
 8.5.1 Refractive Index Structure Function for Isotropic Turbulence 226
8.6 Power Spectral Density of the Turbulence Structure 227
 8.6.1 Power Spectral Density for Isotropic Turbulence 227
 8.6.2 Power Spectrum of Residual OPD Fluctuation for AO-Equipped Telescopes 228
 8.6.3 Volume Contained Under the Power Spectrum 229
8.7 Mathematical Notation Used in This Chapter 230

9 The Average Intensity Envelope of an Unresolved Star Image 233
 9.1 Average Intensity Envelope for the Image of an Unresolved Star 235
 9.2 Average Envelope for a Diffraction-Limited Telescope with Circular Aperture 236
 9.2.1 Case of Isotropic Turbulence .. 236
 9.3 Average Envelopes for Small Diffraction-Limited Telescopes with Circular Apertures 237
 9.4 Seeing Disk Envelopes Formed by Large Telescopes 238
 9.4.1 Case (1): Speckle Images for the Case $\sigma/\lambda \geq 0.4$ 239
 9.4.2 Case (2): Core and Halo Images for the Case $\sigma/\lambda < 0.4$ 242
 9.5 Mathematical Notation Used in This Chapter 245

10 Core and Halo Star Images Formed by Large Telescopes 247
 10.1 Core and Halo Image Structure .. 249
 10.1.1 Core Strength .. 250
 10.1.2 Core Shape .. 250
 10.1.3 Halo Strength .. 251
 10.1.4 Halo Shape .. 251
 10.1.5 Characteristics of Core and Halo Images 252
 10.2 Circularly Symmetric Core and Halo Image Envelopes Formed by Large Telescopes 254
 10.2.1 Circularly Symmetric Telescope Point-Spread Functions 255
10.2.2 Normalization of 10.8
10.2.3 Numerical Accuracy of 10.8
10.3 Theoretical and Observed Core and Halo Structure
 10.3.1 Core Dependence on Wavelength
 10.3.2 Core Dependence on Seeing
 10.3.3 Core Dependence on Telescope Size
 10.3.4 Core Dependence on Telescope Aberrations
 10.3.5 Image Cores Obtained in the Near-IR by the 4-m Mayall Telescope
10.4 The Optimum Wavelength
10.5 Irradiance at Image Center as a Function of Wavelength
10.6 Effect of Telescope Aberrations on Image Cores
 10.6.1 The Effect on Irradiance at Core Center
 10.6.2 The Effect on the Optimum Wavelength
10.7 Instantaneous Core Location for Diffraction-Limited Telescopes
 10.7.1 Angular Jitter of the Image Centroid
 10.7.2 Instantaneous Core Location for Telescopes with Rectangular Apertures
 10.7.3 Instantaneous Core Location for Telescopes with Square Apertures
 10.7.4 Variance of Core Excursions for Rectangular Aperture Telescopes
 10.7.5 rms Core Excursions for Rectangular Aperture Telescopes
 10.7.6 rms Core Excursions for Telescopes with Circular Apertures
10.8 Griffin’s Naked-Eye Core Observations
10.9 Cores at Near-IR Wavelengths
10.10 Adaptive Optics
 10.10.1 Tip–Tilt Correction
 10.10.2 Active Optics
 10.10.3 Laser Guide Stars
10.11 Speckle Imaging
 10.11.1 Lucky Imaging
 10.11.2 Speckle Interferometry
10.12 Mathematical Notation Used in This Chapter
References
11 Statistical Properties of Stellar Speckle Patterns
 11.1 Probability Density Function of the OPD Fluctuation
 11.2 Probability Density Function of the Phase
 11.2.1 PDF of Phase in the Primary Phase Range
 11.3 Star Image Characteristics Dependence on Phase PDF
11.4 Circular Gaussian Speckle in Star Images
- Stellar Speckle with Circular Gaussian Statistics
- First-Order Statistics of the Complex Amplitude
- First-Order Statistics of the Intensity and Phase
- Moments of the Intensity
- The Intensity PDF
- Speckle Contrast
- Signal-to-Noise Ratio
- Reduced Speckle as the Sum of Uncorrelated Gaussian Patterns
- Gaussian Speckle in Star Images Formed by Large Telescopes
- Second-Order Statistics of the Complex Amplitude

11.5 Statistical Properties of Polychromatic Speckle Patterns
- Autocovariance Function of the Integrated Polychromatic Intensity
- The Spectral Correlation Function

11.6 Speckle Reduction Applied to Stellar Speckle Patterns
- Speckle Reduction by Wavelength Integration
- Effective Number of Uncorrelated Speckle Patterns in the Integrated Pattern
- Aperture-Averaged (or Pixel-Averaged) Speckle
- Time-Averaged Speckle
- Multiple Speckle Reduction Mechanisms Acting Simultaneously
- Intensity PDF for a Reduced Speckle Pattern

11.7 Stellar Speckle Statistics When Cores Are Present in the Image
- The Core and Halo Light Fractions in Star Images
- Probability Density Function of the Complex Amplitude
- Probability Density Function of the Intensity and Phase
- Second Moment of the Intensity and Variance
- Contrast and Signal-to-Noise Ratio

11.8 Speckle Statistics for Light of Arbitrary State of Polarization
- Speckle Statistics for Depolarizing Telescopes
- Partially Polarized Speckle Fields and the Degree of Polarization
- Intensity PDFs for Depolarizing and Non-depolarizing Telescopes
11.8.4 Moments of the Intensity for Partially Polarized Speckle .. 341
11.8.5 Intensity Variance for Partially Polarized Speckle .. 342
11.8.6 Contrast and S/N Ratio for Partially Polarized Speckle .. 342
11.8.7 Summary of the Polarization Dependence of Speckle Statistics 343
11.9 Mathematical Notation Used in This Chapter ... 344
References ... 345

12 Star Image Dependence on Turbulence Structure Size ... 347
12.1 The Autocorrelation Function of the OPD Fluctuation ... 348
12.2 Generation of Instantaneous Wavefront Realizations .. 350
12.2.1 Smoothing the Intermediate Wavefront to Get the Final Wavefront 351
12.3 Wavefront Realizations for Small and Large Turbulence Structure 352
12.3.1 Instantaneous Star Image Realizations at Visible Wavelengths 354
12.3.2 Instantaneous Star Image Realizations at Near-IR Wavelengths 356
12.3.3 Conclusions About the Average Turbulence Structure Size ... 356
12.3.4 Correlation Between Speckles at Closely Spaced Wavelengths 358
12.4 Atmospheric MTFs for Small and Large Turbulence ... 359
12.5 Mathematical Notation Used in This Chapter ... 362
References ... 362

13 Approximation of Star Images Formed by Large Telescopes .. 363
13.1 Gaussian Approximations for Unresolved Star Images ... 364
13.1.1 General Properties of Gaussian Functions .. 364
13.1.2 Gaussian Approximations for the Telescope PSF and the Image Core 366
13.1.3 Gaussian Approximations for Halo-Only Images ... 376
13.1.4 Gaussian Approximations for Core and Halo Images .. 381
13.1.5 Anticipated Accuracy of Gaussian Star Image Approximations 383
13.1.6 Normalization of Gaussian Star Image Approximations ... 383
13.1.7 Expressing A_C, A_H, B_C, and B_H in Terms of the Telescope and Seeing 386
13.2 Obtaining the Seeing Parameters and Telescope Strehl from Gaussian Image Approximations 387
13.2.1 Example Calculation of $SI(\lambda)$, σ, and w_o from A_{CH}, B_C, and B_H 388
13.2.2 Calculation of σ and w_o for Reflector Telescopes . . 389
13.2.3 Calculation of Residual Phase Error After AO Correction 389
13.2.4 Obtaining SI, σ, w_{oz}, and w_{off} from Asymmetric Core–Halo Images 393
13.2.5 Maintaining Detailed Seeing Logs While Observing ... 394

13.3 Comparing Intensity Envelopes for Two Different Telescopes ... 395

13.4 Optimum Wavelength for Maximum Irradiance at Image Center .. 396
13.4.1 Optimum Wavelength for Extremely Large AO-Equipped Telescopes ... 398
13.4.2 Irradiance at Image Center for the Optimum Wavelength .. 398

13.5 MTFs Corresponding to Gaussian Core and Halo Image Envelopes .. 399
13.5.1 The Cutoff Frequency for Gaussian MTF Approximations .. 402

13.6 Mathematical Notation Used in This Chapter ... 403

Reference .. 404

14 Telescope Resolution and Optical Tolerance Specifications 405
14.1 Telescope Resolution Criteria ... 409
14.1.1 Rayleigh Criterion ... 409
14.1.2 Dawes Criterion ... 409
14.1.3 Sparrow Criterion ... 410
14.2 Effect of Central Obstruction on Resolution ... 411
14.3 Effect of Mild Aberrations on Resolution ... 413
14.4 Resolution Given by Gaussian Approximation of the Airy Pattern .. 413
14.5 Resolution from Images Displaying Core and Halo Structure .. 414
14.5.1 Calculating the Just-Resolved Separation ... 416
14.5.2 Just-Resolved Separation for Core-Dominated Images ... 418
14.5.3 Just-Resolved Separation for Halo-Dominated Images ... 418
14.5.4 Relative Angular Widths of Cores and Halos ... 419
14.6 Resolution of AO-Equipped Telescopes
14.6.1 Halo-Dominated Images
14.6.2 Emergence of Cores in AO-Corrected Images
14.6.3 Strehl Intensity Limit Imposed by Uncorrected Scintillation
14.7 Irradiance in Center of Star Images Formed by Large Telescopes
14.7.1 Telescope Resolution and the Intensity in Center of a Star Image
14.7.2 Diffraction-Limited Imaging and Imaging at the Optimum Wavelength
14.8 Optical Tolerances for Large Ground-Based Telescopes
14.8.1 Optical Tolerances for Resolving Image Cores
14.8.2 Stability of Multiple-Segment Primary Mirrors
14.9 Defocus Tolerances for Large Telescopes
14.9.1 Allowance for Delivering Diffraction-Limited Image Cores
14.9.2 Allowance for Delivering Substantially Ideal Halo-Only Images
14.9.3 Ratio of Depth of Focus Allowances for Resolving Cores and Halos
14.10 Resolution Obtained by the Keck 10-m Telescopes
14.10.1 Obtaining Diffraction-Limited Images at Visible Wavelengths
14.11 Resolution Possibilities with Future ELT Instruments
14.12 Apparent Star Size and Its Dependence on Star Brightness
14.12.1 Use of Binary Stars to Estimate Limiting Detectable Magnitude
14.13 Resolution Obtained from Speckle Imaging
14.13.1 The Star Test
14.13.2 Optical Transfer Function Tests
14.13.3 Interferometric Tests
14.13.4 The Hartmann Wavefront Test
14.14 Mathematical Notation Used in This Chapter

15 Laboratory Simulation of Images Formed by Large Telescopes
15.1 Choice of Detector in the Optical Simulator
15.2 Choice of Scale Factors in the Optical Simulator
15.2.1 Scaling Equations for Image Simulation at the Same Wavelength 469
15.2.2 Scaling When the Images Are Simulated at a Different Wavelength 474
15.3 Extended Incoherent Illumination and Image Simulation 477
15.3.1 Incoherent and Partially Coherent Illumination 478
15.4 Space Shuttle Image Simulations ... 484
15.4.1 Parameter Values Used for Simulating the Space Shuttle Images 485
15.5 Practical Aspects of Illumination Used in Optical Simulators 487
15.6 Simulating Images of Actively Illuminated Targets 489
15.6.1 Illumination and Imaging of Actively Illuminated Targets 490
15.6.2 Additional Scaling Requirements When Active Illumination Is Used 492
15.6.3 Simulation of Speckle Reduction Mechanisms 492
15.7 Mathematical Notation Used in This Chapter 510
References ... 511

16 Laser Beam Propagation and Path Characterization 513
16.1 OPD Line Integrals for Convergent Beam Paths 515
16.1.1 Phase Screen Stack Representation of Convergent Beam Paths 516
16.2 Autocorrelation Function of Integrated OPD for Convergent Paths 518
16.2.1 OPD Autocorrelation Function Width for Convergent Beam Paths 519
16.3 OPD Autocorrelation Function for Paths Inside the Telescope 520
16.4 OPD Autocorrelation Function for Telescope Coude Paths 521
16.5 Integrated OPD Fluctuation for Entire End-to-End Beam Paths 522
16.6 Reducing End-to-End Integrated OPD Fluctuation by Use of AO 523
16.7 Integrated OPD Fluctuation for an End-to-End Beam Path 524
16.8 Reversibility of Light and Path Characterization Options 524
16.9 Characterizing High Energy Laser (HEL) Beam Paths 525
16.9.1 Optimum Wavelength for Maximum HEL Irradiance at the Target 529
16.9.2 Top-Level Feasibility Analysis of HEL Weapon Systems 533
16.9.3 Final Recourse When Design Changes Fail to Deliver Performance 535
17 Atmospheric Isoplanatic Angle ... 539
17.1 Isoplanatic Angle Background ... 541
17.2 Calculating Isoplanatic Angle ... 543
 17.2.1 Effect of Zenith Angle ... 545
 17.2.2 Isoplanatic Angles for Kolmogorov Turbulence 546
 17.2.3 Isoplanatic Angles for Non-Kolmogorov Turbulence 547
17.3 Why Stars Twinkle but not Planets? 551
 17.3.1 Eye Sensitivity to Twinkling 555
 17.3.2 Minimum Angular Size for Planets to Cease Twinkling 556
 17.3.3 Planetary Twinkling and Estimating Atmospheric Isoplanatic Angle ... 557
17.4 Use of Natural Stars for Stabilizing Images in Large Telescopes ... 558
 17.4.1 Estimating the Location Where the Core Attains Maximum Intensity ... 559
 17.4.2 Radiometry of Reference Star Cores 561
17.5 Use of Natural Stars as Reference Objects for AO Image Correction ... 565
 17.5.1 Radiometry of Natural Stars Used as AO Reference Objects ... 565
17.6 Sky Coverage When Natural Stars Are Used as Reference Objects ... 568
 17.6.1 Coverage for Image Stabilization at Near-IR Wavelengths ... 570
 17.6.2 Coverage for Image Stabilization at Visible Wavelengths ... 571
 17.6.3 Coverage for AO Correction at Near-IR Wavelengths 571
 17.6.4 Coverage for AO Correction at Visible Wavelengths 572
 17.6.5 Coverage Using Natural Reference Stars with ELT Instruments ... 572
17.7 Mathematical Notation Used in This Chapter 574
References ... 575
Appendix A: James Clerk Maxwell and the Electromagnetic Field Equations .. 577
Appendix B: Coherence Terminology .. 581
Appendix C: Turbulence Outer-Scale Limits Measured by Coulman et al. .. 585
Appendix D: Optical Path Characterization Using Scintillometry .. 591
Appendix E: Radiometry of the Sun and Stars .. 593
Appendix F: Intensity Correlation Coefficient Estimates and Photon Noise Compensation .. 597
Appendix G: Image Core Correspondence from Roger F. Griffin .. 599
Appendix H: Light Scattering by Spherical Turbulence Structures .. 601
Appendix I: A Critique of Kolmogorov Theory as Applied to Atmospheric Turbulence Modeling .. 607
References .. 617
Index .. 619
General Theory of Light Propagation and Imaging Through the Atmosphere
McKechnie, T.S.
2016, XXIX, 624 p. 190 illus., 13 illus. in color., Hardcover
ISBN: 978-3-319-18208-7