Contents

1 Nonlinear Systems with 1-n Degrees of Freedom ... 1
1.1 Introduction .. 1
1.2 Cartesian Coordinates, Degrees of Freedom, Independent Coordinates 1
1.3 Writing Equations of Motion ... 11
 1.3.1 Definition of the Various Forms of Energy
 as a Function of the Physical Variables 12
 1.3.2 Definition of the Various Forms of Energy
 as a Function of the Independent Variables 17
 1.3.3 Application of Lagrange’s Equations 19
 1.3.4 Lagrange Multiplier Method ... 20
 1.3.5 Method of Introducing Real Constraints
 Using Force Fields ... 23
1.4 Nonlinear Systems with One Degree of Freedom 23
 1.4.1 Writing Equations of Motion “in the Large” 24
 1.4.2 Writing Linearized Equations ... 30
1.5 Nonlinear Systems with 2 Degrees of Freedom 37
1.6 Multi-Body Systems ... 44
 1.6.1 Vector Analysis ... 46
 1.6.2 Kinematic Analysis of the Rigid Body 48
 1.6.3 Rotations and Angular Velocity of the Rigid Body 53
 1.6.4 The Transformation Matrix of the Coordinates
 in Terms of Cardan Angles .. 55
 1.6.5 Relationship Between the Angular Velocities
 and the Velocities in Terms of Cardan Angles 57
1.7 The Dynamics of a Rigid Body ... 57
 1.7.1 Inertial Terms ... 59
 1.7.2 External Excitation Forces ... 62
 1.7.3 Elastic and Gravitational Forces .. 64
 1.7.4 Dissipation Forces ... 68
 1.7.5 Definition of Kinetic Energy ... 70
2 The Dynamic Behaviour of Discrete Linear Systems

2.1 Introduction ... 83
2.2 Writing Equations of Motion 83
 2.2.1 Kinetic Energy .. 85
 2.2.2 Dissipation Function 88
 2.2.3 Potential Energy 90
 2.2.4 Virtual Work of Active Forces 93
 2.2.5 Equations of Motion 95
2.3 Some Application Examples 97
 2.3.1 One-Degree-of-Freedom Systems 97
 2.3.2 Two-Degree-of-Freedom Systems 99
 2.3.3 An Additional Example of Two-Degree-of-Freedom Systems ... 105
 2.3.4 A Further Example of a Two-Degree-of-Freedom Systems ... 115
 2.3.5 n-Degree-of-Freedom Systems 117
2.4 Solving the Equations of Motion 125
 2.4.1 One-Degree-of-Freedom System 125
 2.4.2 Two-Degree-of-Freedom Systems 170
 2.4.3 n-Degree-of-Freedom System 198
2.5 Modal Approach for Linear n-Degree-of-Freedom Systems 211
 2.5.1 Modal Approach for Two-Degree-of-Freedom Systems ... 211
 2.5.2 Modal Approach for n-Degree-of-Freedom Systems ... 215
 2.5.3 Forced Motion in Principal Coordinates 224
References ... 239

3 Vibrations in Continuous Systems 241
3.1 Introduction ... 241
3.2 Transverse Vibrations of Cables 241
 3.2.1 Propagative Solution 245
 3.2.2 Stationary Solution 247
3.3 Transverse Vibrations in Beams 252
 3.3.1 Transverse Vibrations in Beams Subjected to an Axial Load (Tensioned Beam) 265
3.4 Torsional Vibrations in Beams 273
3.5 Analysis of the General Integral of the Equation of Motion in Continuous Systems 275
3.6 Analysis of the Particular Integral of Forced Motion
3.6.1 Hysteretic Damping in the Case of a Taut Cable (Direct Approach)
3.7 Approach in Principal Coordinates
3.7.1 Taut Cable Example
References

4 Introduction to the Finite Element Method
4.1 Introduction
4.2 The Shape Function
4.2.1 Shape Function for the Taut Cable Element
4.2.2 The Shape Function for the Beam Element
4.2.3 Shape Function for Generic Finite Elements
4.3 The Equations of Motion of the System
4.4 Taut Cable Finite Element (an Application Example)
4.4.1 Discretization of the Structure
4.4.2 Definition of the Stiffness $[K_j]$ and Mass $[M_j]$ Matrix of the Taut Cable Finite Element in the Local Reference System
4.4.3 Transformation of Coordinates: Local Reference System, Absolute Reference System
4.4.4 Definition of the Stiffness $[K_j]$ and Mass $[M_j]$ Matrix of the Taut Cable Element in the Global Reference System
4.4.5 Assembly of the Complete Structure
4.4.6 Calculation of the Generalized Forces
4.4.7 Imposition of Constraints (Boundary Conditions)
4.4.8 Solving the Equations of Motion
4.4.9 A Numerical Example
4.5 An Application Example: Finite Beam Element
4.5.1 Discretization of the Structure
4.5.2 Definition of the Stiffness $[K_l]$ and Mass $[M_l]$ Matrix of the Beam Element in the Local Reference System
4.5.3 Definition of the Stiffness $[K_j]$ and Mass $[M_j]$ Matrix of the Beam Element in the Global Reference System
4.5.4 Writing of the Equations of Motion and Their Solution
4.5.5 A Numerical Example
4.6 Two-Dimensional and Three-Dimensional Finite Elements
(Brief Outline) .. 374
4.6.1 Definition of the Generic Shape Function 378
4.6.2 General Definition of the Stiffness and Mass Matrices of the Generic Three-Dimensional Finite Element 379
4.6.3 Two-Dimensional Elements (Membrane) 383
4.6.4 Three-Dimensional Elements (Brick Elements) 387
4.6.5 Plate Elements and Shell Elements 390
4.6.6 Isoparametric Elements .. 391
4.7 Nonlinear Analysis in Structures Using the Finite Element Method (Brief Outline) 394
4.7.1 Introduction to the Non-linear Problem 395
4.7.2 Linearization of the Equations of Motion About the Equilibrium Position .. 397
4.8 Numerical Integration of the Equations of Motion (Brief Outline) ... 406
4.8.1 The Newmark Method in a Linear Field 409
4.8.2 The Newmark Method in a Nonlinear Field 410
4.9 Summary .. 411
References ... 411

5 Dynamical Systems Subjected to Force Fields 413
5.1 Introduction .. 413
5.2 Vibrating Systems with 1 DOF Perturbed Around the Position of Equilibrium ... 417
5.2.1 System with 1 DOF Placed in an Aerodynamic Force Field ... 422
5.3 Vibrating Systems with 2 d.o.f. Perturbed Around the Position of Equilibrium ... 439
5.3.1 Two-Degree-of-Freedom System with Placed in a Field of Purely Positional Forces 443
5.3.2 Two-Degrees-of-Freedom System Placed in a Field of Position and Velocity Dependent Forces 461
5.4 Multi-Degree-of-Freedom Vibrating Systems Perturbed Around the Position of Equilibrium 480
5.4.1 The General Method for Analysing a n-Degree-of-Freedom System Subject to Non-conservative Forces .. 480
5.4.2 An Example: An Aerofoil Hit by a Confined Flow (n-Degree-of-Freedom System) 484
5.5 Systems Perturbed Around the Steady-State Position 498
5.5.1 Systems with 1 d.o.f. ... 498
5.5.2 Systems with 2 d.o.f. ... 502
References ... 548
6 Rotordynamics .. 555
6.1 Introduction .. 555
6.2 Description of the System Composed of the Rotor and the Supporting Structure Interacting with It 555
 6.2.1 Schematising the Rotor 557
 6.2.2 Schematising Bearings 561
 6.2.3 Defining the Field of Forces in Seals or More in General Between Rotor and Stator 574
 6.2.4 Schematising the Casing and the Supporting Structure .. 575
 6.2.5 The Overall Model (an Example of Application) 584
6.3 Analysing the Different Vibration Problems Encountered in Rotordynamics ... 592
6.4 Critical Speed, Response of the Rotor to Unbalance 595
 6.4.1 Two Degree-of-Freedom Model Without Damping ... 596
 6.4.2 Two-Degree-of-Freedom Model with Damping 600
 6.4.3 Determining the Generalised Forces Acting on a Rotor Due to Unbalance 602
6.5 Balancing Methods ... 608
 6.5.1 Disk Balancing ... 610
 6.5.2 Balancing a Real Rotor 616
6.6 Two-Per-Rev Vibrations Excited by Different Rotor Stiffnesses, in Horizontal Shafts 644
 6.6.1 Two-Degree-of-Freedom Model 647
 6.6.2 Schematisation of the Problem on a Real Rotor 654
6.7 The Hysteretic Damping Effect 661
 6.7.1 Two-Degree-of-Freedom Model 661
6.8 The Gyroscopic Effect ... 670
6.9 Oil-Film Instability ... 681
 6.9.1 Estimating Instability Using the Eigenvalue and Eigenvector Solution 683
 6.9.2 Estimating Instability with the Modal Method 683
 6.9.3 Estimating Instability with the Forced Method 685
 6.9.4 Effect of Load Variations on Supports on the Conditions of Instability 687
6.10 Torsional Vibrations ... 689
 6.10.1 Methods for Reducing to an Equivalent System 692
 6.10.2 Schematisations with N-Degree-of-Freedom Systems .. 694
 6.10.3 Schematisation with Continuous Bodies 698
 6.10.4 Finite Element Schematisation 699
 6.10.5 Elements that Can Be Adopted to Reduce Torsional Vibrations ... 700
References .. 703
7 Random Vibrations ... 709
 7.1 Introduction ... 709
 7.2 Defining a Random Process 712
 7.3 Parameters Defining the Statistical Characteristics
 of a Random Process 713
 7.3.1 Calculating the Power Spectral Density Function
 and Cross-Spectra 722
 7.4 Defining the Random Stationary and Ergodic Process 731
 7.5 The Response of a Vibrating System to Random Excitation . 733
 7.5.1 Analysis with Several Correlated Processes 738
 7.6 Some Examples of Application 738
 7.6.1 Response of a Structure to Turbulent Wind 738
 7.6.2 Response of a Structure to Wave Motion 749
 7.6.3 Irregularities in the Road Profile 760
References .. 768

8 Techniques of Identification 771
 8.1 Introduction ... 771
 8.1.1 Identifying the Parameters of a Mechanical
 System in the Time and Frequency Domain 774
 8.1.2 The Least Squares Method 776
 8.2 Modal Identification Techniques 778
 8.2.1 Introduction .. 778
 8.2.2 An Outline of the Basic Equations 778
 8.2.3 Graphic Representations of the Transfer Function ... 783
 8.2.4 Defining the Experimental Transfer Function 785
 8.2.5 Determining Modal Parameters 791
 8.2.6 Applications and Examples 801
 8.3 Identification in the Time Domain 803
 8.3.1 The Ibrahim Method 805
References .. 817
Advanced Dynamics of Mechanical Systems
Cheli, F.; Diana, G.
2015, XXII, 818 p. 401 illus., Hardcover
ISBN: 978-3-319-18199-8