Preface

By systematically building an optimal theory, this monograph develops and explores several approaches to Hardy spaces (H^p spaces) in the setting of d-dimensional Ahlfors-regular quasi-metric spaces. The text is broadly divided into two main parts. The first part debuts by revisiting a number of basic analytical tools in quasi-metric space analysis, for which new versions are produced in the nature of best possible. These results, themselves of independent interest, include a sharp Lebesgue differentiation theorem, a maximally smooth approximation to the identity, and a Calderón-Zygmund decomposition for a brand of distributions suitably adapted to our general setting. Such tools are then used to obtain atomic, molecular, and grand maximal function characterizations of H^p spaces for an optimal range of p’s. This builds on and extends the work of many authors, ultimately creating a versatile theory of H^p spaces in the context of Ahlfors-regular quasi-metric spaces for a sharp range of p’s.

The second part of the monograph establishes very general criteria guaranteeing that a linear operator T acts continuously from a Hardy space H^p into some topological vector space L, emphasizing the role of the action of the operator T on H^p-atoms. Applications include the solvability of the Dirichlet problem for elliptic systems in the upper-half space with boundary data from H^p spaces. The tools originating in the first part are also used to develop a sharp theory of Besov and Triebel-Lizorkin spaces in Ahlfors-regular quasi-metric spaces.

The monograph is largely self-contained and is intended for an audience of mathematicians, graduate students, and professionals with a mathematical background who are interested in the interplay between analysis and geometry.

Columbia, MO, USA
March 5, 2015

Ryan Alvarado
Marius Mitrea
Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces
A Sharp Theory
Alvarado, R.; Mitrea, M.
2015, VIII, 486 p. 17 illus., 12 illus. in color., Softcover
ISBN: 978-3-319-18131-8