Contents

1 Introduction ... 1
 1.1 Problem Statement and Scope ... 1
 1.2 Research Objective and Approach ... 2
 References .. 4

2 Review on the State of the Research in Energy and Eco-efficiency of Manufacturing Processes ... 5
 2.1 What Is Energy Efficiency ... 5
 2.1.1 Thermodynamic Approach ... 6
 2.1.2 Physical-Thermodynamic Approach ... 10
 2.1.3 The Predictions of SEC ... 11
 2.1.4 Energy Efficiency Practices in Manufacturing 15
 2.2 What Is Eco-efficiency? .. 16
 2.2.1 The General Definition of Eco-efficiency 16
 2.2.2 Environmental Studies of Manufacturing Processes 17
 2.2.3 LCC/LCA Approach .. 19
 2.3 Ensuing Need for Research ... 19
 References .. 20

3 Methodology for Characterizing Energy and Eco-efficiency of Manufacturing Processes ... 23
 3.1 Methodology of Energy Efficiency Evaluation for Unit Process 24
 3.1.1 Empirical Modelling .. 24
 3.1.2 Stage I: Methodology of Design of Experiments (DoE) 26
 3.1.3 Stage II: Energy Metering and Monitoring System 30
 3.1.4 Stage III: Statistical Analysis and Regression Methods 33
 3.1.5 Stage IV: Validation Methods .. 36
 3.1.6 Summary of Model Development .. 36
 3.2 Methodology of Eco-efficiency Evaluation for Unit Process 36
 3.2.1 Definition of Eco-efficiency Evaluation for Unit Process 36
 3.2.2 The Value of a Unit Process ... 38
5 Eco-efficiency of Manufacturing Processes

5.1 Eco-efficiency of Material Removal Processes
 - 5.1.1 The Value of Material Removal Processes
 - 5.1.2 The Associated Environmental Impact
 of Material Removal Processes
 - 5.1.3 The Interrelationship Within the Material
 Removal Processes

5.2 Eco-efficiency of Injection Molding Processes
 - 5.2.1 The Value of Injection Molding Processes
 - 5.2.2 The Associated Environmental Impact
 of Injection Molding Processes

5.3 Eco-efficiency of Grinding Processes
 - 5.3.1 The Value of Grinding Processes
 - 5.3.2 The Associated Environmental Impact
 of Grinding Processes
 - 5.3.3 The Interrelationship Within the Grinding Processes

5.4 Summary

References

6 Implementation Towards Improving Energy
and Eco-efficiency of Manufacturing Processes

6.1 Investigation into Model Coefficients
 - 6.1.1 Comparison Between Empirical Models
 and Exergy Framework
 - 6.1.2 SEC Decomposition
 - 6.1.3 Coefficients c_0 and c_1

6.2 Model Clustering for Metal Machining Processes

6.3 Implementation the Methodology of Energy Efficiency
 Evaluation in an Industrial Environment
 - 6.3.1 Challenges in Industries
 - 6.3.2 Modified Methodology for Characterizing
 Energy-Efficiency in Industries
 - 6.3.3 Case Study: A Case of Sheet Extrusion Line

6.4 Improving Life Cycle Inventory (LCI) Database

6.5 Energy Efficiency Strategies for Manufacturing Processes
 - 6.5.1 Energy Efficiency Strategies: An Operator’s Perspective
 - 6.5.2 Energy Efficiency Strategies: A Machine Tool
 Builder’s Perspective
 - 6.5.3 Energy Efficiency Strategies: A Designer’s Perspective

6.6 Summary

References
7 Conclusions ... 143
 7.1 Concluding Remarks ... 143
 7.2 Research Contributions ... 145
 7.3 Recommendations for Future Works 145

Appendix 1 .. 147

Appendix 2 .. 149

Appendix 3 .. 151

Appendix 4 .. 169

Index ... 175
Efficiency of Manufacturing Processes
Energy and Ecological Perspectives
Li, W.
2015, XIV, 179 p. 89 illus., 15 illus. in color., Hardcover
ISBN: 978-3-319-17364-1