3 Wall-Bounded Turbulent Flows

3.1 Friction Velocity

3.2 Equation for the Mean Velocity Profile
 3.2.1 The Plane Channel Flow
 3.2.2 The Boundary Layer

3.3 Viscous Sublayer

3.4 The Logarithmic Region
 3.4.1 Dimensional Analysis
 3.4.2 Some Examples
 3.4.3 The Balance Between Production and Dissipation
 3.4.4 Kolmogorov Length Scale

3.5 The Buffer Layer

3.6 Free Edges
 3.6.1 Turbulence Near the Free Edge of Boundary Layers
 3.6.2 Turbulence in the Core Region of Channels or Pipes
 3.6.3 Other Results

3.7 Modeling for a Numerical Simulation
 3.7.1 Mixing Length Model
 3.7.2 The van Driest Model
 3.7.3 Asymptotic Behaviour Very Near the Wall

3.8 More Complex Boundary Layers

3.9 Boundary Layer Equations

4 Free Turbulent Flows: Jets and Wakes

4.1 Natural Development of a Free Turbulent Round Jet

4.2 Self-similarity for a Round Jet
 4.2.1 Averaged Equations
 4.2.2 Thin Shear Layer Approximation
 4.2.3 Similarity Solution
 4.2.4 Expression of the Radial Profile
 4.2.5 Some Other Quantities
 4.2.6 Experimental and Numerical Results

4.3 Similarity for a Plane Jet

4.4 Similarity for a Plane Wake
 4.4.1 Far Wake Approximation
 4.4.2 Drag Coefficient
 4.4.3 Self-similar Solution for a Far Plane Wake

4.5 Similarity for a Far Axisymmetric Wake
5 Vortex Dynamics .. 113
 5.1 The Biot-Savart Law .. 113
 5.2 Vortex Stretching .. 115
 5.3 Helmholtz’s Equation 118
 5.4 Two Numerical Illustrations 121
 5.5 Transport Equation for the Mean Vorticity 123
 5.6 Enstrophy .. 124
 5.7 Helicity .. 125
 5.8 Equation for the Specific Vorticity* 126
 5.9 Identification of a Vortex* 127

6 Homogeneous and Isotropic Turbulence 129
 6.1 Homogeneous Turbulence 129
 6.1.1 Length Scales .. 131
 6.1.2 Spectral Tensor of the Velocity Field 132
 6.1.3 Spectral Tensor 133
 6.1.4 One-Dimensional Spectra 135
 6.1.5 Turbulent Kinetic Energy 136
 6.1.6 Enstrophy and Dissipation 137
 6.1.7 Rapid Distortion of the Turbulence 138
 6.2 Incompressible Isotropic Turbulence 139
 6.2.1 Double Velocity Correlation at a Point 140
 6.2.2 Double Velocity Correlation at Two Points 141
 6.2.3 Double Pressure-Velocity Correlations at Two Points. 145
 6.2.4 Triple Correlations of the Velocities at Two Points 146
 6.2.5 Spectral Velocity Tensor 146
 6.2.6 Useful Other Results 150
 6.3 Experimental Realization of Isotropic Turbulence 151
 6.3.1 Experimental Configuration 152
 6.3.2 The Turbulence Decay 154
 6.4 Particle Dispersion by Homogeneous Turbulence 156
 6.4.1 Free-Space Dispersion 157
 6.4.2 Longitudinal Dispersion in a Circular Pipe 160
 6.5 Approximate Expression of the Dissipation for an Inhomogeneous Turbulence* 162
 6.6 Helicity* .. 163
 6.7 Proper Orthogonal Decomposition* 166
 6.8 Rapid Distortion: The Case of an Axisymmetric Contraction* .. 173
7 The Dynamics of Isotropic Turbulence 179
 7.1 Kolmogorov Theory .. 179
 7.2 Equation of Kármán and Howarth 184
 7.3 Lin Equation ... 186
 7.4 Lin Equation Closures .. 188
 7.5 Characteristic Times of Turbulence 190
 7.5.1 The Memory Time of Turbulence 190
 7.5.2 The Spectral Times of Turbulence 190
 7.6 Further Details on Kolmogorov Theory* 192
 7.6.1 Structure Functions of Velocity* 192
 7.6.2 Refinement of Kolmogorov Theory* 195
 7.6.3 Overview of the Log-normal Distribution of the Dissipation* 197
 7.7 Homogeneous and Isotropic Two-Dimensional Turbulence* 200
 7.8 Fourier Transform of the Navier-Stokes Equations 205
 7.9 Closure with the EDQNM Hypothesis* 207

8 Direct and Large Eddy Simulation of Turbulent Flows 211
 8.1 Direct Numerical Simulation 211
 8.1.1 Numerical Methods 213
 8.1.2 Some Applications of DNS 217
 8.2 Large Eddy Simulation .. 219
 8.2.1 Spatial Filtering .. 219
 8.2.2 Filtered Navier-Stokes Equations 220
 8.2.3 Modelling of Subgrid Scales in LES 222
 8.2.4 Closure with a Turbulent Viscosity Model 223
 8.2.5 LES Based on an Explicit Relaxation Filtering 231
 8.3 Classification of Partial Differential Equations* 237
 8.4 Favre Filtering* .. 239
 8.5 Compressible Large Eddy Simulation* 240
 8.5.1 Filtered Navier-Stokes Equations* 240
 8.5.2 Total Internal Energy Conservation* 242
 8.5.3 Variant of the Energy Equation* 244

9 Turbulence Models ... 245
 9.1 Mixing Length Models .. 246
 9.2 The k_r model Turbulence Model 247
 9.2.1 Transport Equation of Turbulent Kinetic Energy 247
 9.2.2 Transport Equation for Dissipation 249
 9.2.3 Transport Equation of Energy 250
 9.2.4 High-Reynolds-Number Form of the Model 252
 9.2.5 Determination of the Constant C_{ϵ} 253
 9.2.6 Low-Reynolds-Number Form of the k_r model 254
 9.2.7 Realisability and Unsteady Simulations 255
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>The $k_t-\epsilon$ Model for Compressible Flows</td>
<td>256</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Favre-Averaged Navier-Stokes Equation</td>
<td>256</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Compressible Form of the Dissipation Rate</td>
<td>259</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Compressible Form of the $k_t-\epsilon$ Model</td>
<td>260</td>
</tr>
<tr>
<td>9.4</td>
<td>The $k_t-\omega_t$ Turbulence Model</td>
<td>262</td>
</tr>
<tr>
<td>9.5</td>
<td>The Spalart and Allmaras Turbulence Model</td>
<td>263</td>
</tr>
<tr>
<td>9.6</td>
<td>Concluding Remarks</td>
<td>264</td>
</tr>
<tr>
<td>9.7</td>
<td>Equation for the Dissipation in Incompressible Homogeneous Turbulence</td>
<td>265</td>
</tr>
<tr>
<td>9.8</td>
<td>Favre-Averaged Turbulent Kinetic Energy Equation</td>
<td>266</td>
</tr>
<tr>
<td>10</td>
<td>Experimental Methods</td>
<td>269</td>
</tr>
<tr>
<td>10.1</td>
<td>Thermal Anemometry</td>
<td>269</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Main Lines of Operation</td>
<td>269</td>
</tr>
<tr>
<td>10.1.2</td>
<td>The Wires and Their Positions in a Turbulent Flow</td>
<td>271</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Heat Transfer Relationship for Ideal Wires</td>
<td>273</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Constant Current Anemometer</td>
<td>275</td>
</tr>
<tr>
<td>10.1.5</td>
<td>Constant Temperature Anemometer</td>
<td>279</td>
</tr>
<tr>
<td>10.1.6</td>
<td>Constant Voltage Anemometer</td>
<td>284</td>
</tr>
<tr>
<td>10.1.7</td>
<td>Some Additional Remarks</td>
<td>287</td>
</tr>
<tr>
<td>10.1.8</td>
<td>Illustrative Examples</td>
<td>289</td>
</tr>
<tr>
<td>10.2</td>
<td>Laser Doppler Anemometry</td>
<td>295</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Principle</td>
<td>295</td>
</tr>
<tr>
<td>10.2.2</td>
<td>The Dual-Beam LDA</td>
<td>296</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Implementation of a Dual-Beam LDA</td>
<td>298</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Additional Comments</td>
<td>303</td>
</tr>
<tr>
<td>10.3</td>
<td>Particle Image Velocimetry</td>
<td>304</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Principle of 2D-2C PIV</td>
<td>304</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Implementation of 2D-2C PIV</td>
<td>306</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Examples of 2D-2C PIV</td>
<td>311</td>
</tr>
<tr>
<td>10.3.4</td>
<td>2D-3C or Stereoscopic PIV</td>
<td>312</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>Author Index</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>Subject Index</td>
<td></td>
<td>357</td>
</tr>
</tbody>
</table>
Turbulence
Bailly, C.; Comte-Bellot, G.
2015, XX, 360 p. 147 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-16159-4