Contents

1 **Neurochemical Aspects of Alzheimer Disease** 1
 1.1 Introduction.. 1
 1.2 Key Molecular Changes Contributing to the Pathogenesis
 Alzheimer Disease .. 5
 1.2.1 Neural Membrane Phospholipid Alterations
 in Alzheimer Disease .. 6
 1.2.2 Neural Membrane Sphingolipid Alterations
 in Alzheimer Disease .. 8
 1.2.3 Changes in Cholesterol-Derived Metabolites
 in Alzheimer Disease .. 10
 1.3 Protein Metabolism Alterations in Alzheimer Disease............... 14
 1.3.1 Nonamyloidogenic Pathway .. 17
 1.3.2 Amyloidogenic Pathway .. 19
 1.3.3 Degradation of Aβ in the Brain ... 21
 1.3.4 Interactions of Aβ Peptide with Other Proteins 24
 1.3.5 Contribution of Hyperphosphorylated Tau Protein
 in the Pathogenesis of AD .. 28
 1.3.6 Contribution of Insulin and Insulin Resistance
 in Pathogenesis of AD ... 30
 1.4 Nucleic Acid Changes in Alzheimer Disease 34
 1.5 Metabolic Syndrome as a Risk Factor for Alzheimer Disease 37
 1.6 Metal Ions and Pathogenesis of Alzheimer Disease 38
 1.7 Involvement of Neurotrophins in AD ... 45
 1.8 Wnt Signaling in the Progression of Alzheimer Disease 47
 1.9 Leptin Signaling and Alzheimer Disease 48
 1.10 Other Neurochemical Changes and Progression Toward AD 50
 1.11 Conclusion... 51

References ... 51
2 Potential Animal Models of Alzheimer Disease and Their Importance in Investigating the Pathogenesis of Alzheimer Disease

2.1 Introduction

2.2 Potential Animal Models and Alzheimer Disease

2.2.1 Invertebrate Models of Alzheimer Disease

2.2.2 Vertebrate Models for Alzheimer Disease

2.3 Neurotoxin-Based Animal Models for Alzheimer Disease

2.3.1 Cholinergic and Glutamatergic Signaling Animal Models of Alzheimer Disease

2.3.2 Aluminum in the Development of Animal Models of Alzheimer Disease

2.3.3 Transgenic Models of Alzheimer Disease

2.4 Animal Models of Alzheimer Disease in Cell Culture

2.5 The Gap Between Mouse Models and Human Patients of Alzheimer Disease

2.6 Conclusion

References

3 Metabolism, Bioavailability, Biochemical Effects of Curcumin in Visceral Organs and the Brain

3.1 Introduction

3.2 Bioavailability of Curcumin and Its Analogs in Visceral Organs and Brain

3.3 Different Approaches for the Delivery of Curcumin to the Brain

3.3.1 Piperine and Curcumin Delivery

3.3.2 Nanocarriers for Curcumin Delivery

3.4 Biochemical Activities and Targets of Curcumin Action

3.4.1 Antioxidant Properties of Curcumin

3.4.2 Antiinflammatory Properties of Curcumin

3.4.3 Anti-Excitotoxic Activities of Curcumin

3.4.4 Anti-Diabetic Activities of Curcumin

3.4.5 Antinociceptive Effects of Curcumin

3.4.6 Anticancer Effects of Curcumin

3.5 Curcumin and Iron Chelation

3.6 Neuroprotective Activities of Curcumin

3.7 Conclusion

References

4 Effects of Curcumin on Transcription Factors and Enzyme Activities in Visceral Organs and the Brain

4.1 Introduction

4.2 Effect of Curcumin on Transcription Factors

4.2.1 Modulation of NF-κB by Curcumin

4.2.2 Modulation of AP1 by Curcumin
4.2.3 Modulation of STAT3 by Curcumin 157
4.2.4 Modulation of HIF-1α by Curcumin 159
4.2.5 Modulation of Nrf2 by Curcumin 162
4.2.6 Modulation of E2F by Curcumin 164
4.2.7 Modulation of FOXO by Curcumin 165
4.3 Effect of Curcumin on Enzyme Activities 166
 4.3.1 Effect of Curcumin on Cyclooxygenases and Lipoxygenases ... 167
 4.3.2 Effect of Curcumin on Kinases .. 167
 4.3.3 Effect of Curcumin on Matrix Metalloproteinase 169
 4.3.4 Effect of Curcumin on Caspases .. 169
 4.3.5 Effect of Curcumin on Glutathione S-Transferase 170
 4.3.6 Effect of Curcumin on Inducible Nitric Oxide Synthase ... 171
 4.3.7 Effect of Curcumin on Telomerase 171
4.4 Conclusion.. 172
References... 173

5 Effect of Curcumin on Growth Factors and Their Receptors, Ion Channels, and Transporters in the Visceral Organs and the Brain ... 183
5.1 Introduction.. 183
5.2 Effect of Curcumin on Growth Factors in Visceral Organs 184
 5.2.1 Effect of Curcumin on Vascular Endothelial Growth Factor (VEGF) ... 185
 5.2.2 Effect of Curcumin on Basic Fibroblast Growth Factor (bFGF) ... 187
 5.2.3 Effect of Curcumin on Epidermal Growth Factor (EGF) .. 189
 5.2.4 Effect of Curcumin on Hypoxia-Inducible Factor (HIF)-α ... 191
 5.2.5 Effect of Curcumin on Peroxisome Proliferator-Associated Receptor γ .. 192
 5.2.6 Effect of Curcumin on Signal Transducer and Activator of Transcription .. 193
5.3 Effects of Curcumin on Ion Channels and Transporters in Visceral Organs and Brain ... 194
 5.3.1 Modulation of Ion Channels by Curcumin 195
 5.3.2 Modulation of Transporters by Curcumin 197
5.4 Effect of Curcumin on Obesity .. 197
5.5 Effect of Curcumin and Mammalian Target of Rapamycin (mTOR) ... 200
5.6 Conclusion.. 201
References... 201
6 Effects of Curcumin on Oxidative Stress in Animal Models and Patients with Alzheimer Disease ... 209
 6.1 Introduction.. 209
 6.2 Oxidative Stress, Nitrosative Stress, and Redox Systems in the Brain... 211
 6.3 Sources Contributing to ROS Formation in Brains from Normal Subjects and Patients with Alzheimer Disease 223
 6.3.1 Contribution of Phospholipids in the Induction of Oxidative Stress ... 225
 6.3.2 Contribution of Carbohydrates in the Induction of Oxidative Stress ... 225
 6.3.3 Contribution of Proteins in the Induction of Oxidative Stress ... 228
 6.3.4 Contribution of Nucleic Acids in the Induction of Oxidative Stress ... 230
 6.4 Contribution of Transcription Factors in Oxidative Stress Associated with Alzheimer Disease .. 233
 6.4.1 AP1 Activity and Oxidative Stress in Alzheimer Disease ... 234
 6.4.2 NF-κB Activity, Oxidative Stress in Alzheimer Disease ... 234
 6.4.3 Nrf2 Activity and Oxidative Stress in Alzheimer Disease ... 236
 6.4.4 Hypoxia-Inducible Factor Activity and Oxidative Stress in Alzheimer Disease ... 237
 6.4.5 Peroxisome-Proliferator Activator Receptors and Oxidative Stress in Alzheimer Disease ... 238
 6.4.6 Signal Transducer and Activator of Transcription 3 and Oxidative Stress in Alzheimer Disease 239
 6.5 Effects of Curcumin on Downregulation of Oxidative Stress in Alzheimer Disease ... 239
 6.6 Conclusion.. 244
References .. 245

7 Effects of Curcumin on Neuroinflammation in Animal Models and in Patients with Alzheimer Disease .. 259
 7.1 Introduction.. 259
 7.2 Neurochemical Aspects of Neuroinflammation in the Brain 260
 7.2.1 Acute Neuroinflammation and Brain Damage ... 266
 7.2.2 Chronic Neuroinflammation and Brain Damage ... 270
 7.3 Effect of Neuroinflammation on Telomere Length and Cognition .. 276
 7.4 Role of Redox Signaling in Neuroinflammation in the Brain 277
 7.5 Effect of Age on Neuroinflammation... 279
7.6 Effects of Curcumin on Inflammation in Animal Models and Patients with Alzheimer Disease

- 280

7.7 Conclusion

- 284

References

- 285

8 Therapeutic Importance of Curcumin in Neurological Disorders Other Than Alzheimer Disease

8.1 Introduction

- 297

8.2 Neurological Disorders

- 298

8.3 Therapeutic Importance of Curcumin in Neurotraumatic Diseases

- 301
 8.3.1 Effects of Curcumin on Stroke-Mediated Neuronal Injury

- 302
 8.3.2 Effects of Curcumin on Traumatic Brain Injury (TBI)-Mediated Injury

- 304
 8.3.3 Effects of Curcumin on Spinal Cord Injury (SCI)

- 305
 8.3.4 Effects of Curcumin on Epilepsy

- 306

8.4 Therapeutic Importance of Curcumin in Neurodegenerative Diseases Other Than Alzheimer Disease

- 308
 8.4.1 Effects of Curcumin in Parkinson Disease

- 309
 8.4.2 Effects of Curcumin in Huntington Disease

- 314
 8.4.3 Effects of Curcumin on Prion Diseases

- 315
 8.4.4 Effect of Curcumin in Multiple Sclerosis

- 318

8.5 Therapeutic Importance of Curcumin in Neuropsychiatric Diseases

- 319
 8.5.1 Curcumin and Depression

- 319
 8.5.2 Curcumin and Bipolar Disorders

- 322

8.6 Conclusion

- 322

References

- 323

9 Treatment of Alzheimer Disease with Phytochemicals Other Than Curcumin

9.1 Introduction

- 335

9.2 Phytochemicals and Hormesis

- 337

9.3 Phytochemical and Alzheimer Disease

- 339
 9.3.1 Resveratrol and Alzheimer Disease

- 340
 9.3.2 Green Tea and Alzheimer Disease

- 344
 9.3.3 Ginkgo Biloba and Alzheimer Disease

- 347
 9.3.4 Ginseng and Alzheimer Disease

- 351
 9.3.5 Garlic and Alzheimer Disease

- 353
 9.3.6 Huperzine and Alzheimer Disease

- 357

9.4 Conclusion

- 359

References

- 359
10 Summary, Perspective and Direction for Future Research 369
 10.1 Introduction .. 369
 10.2 Curcumin as Therapeutic Agent for AD .. 370
 10.3 Pharmacokinetics of Curcumin Metabolism 378
 10.4 Curcumin Analogs as Imaging Probes ... 380
 10.5 Biomarkers to Follow the Effect of Curcumin Treatment 384
 10.6 Side Effects and Future Studies on Therapeutic Potential of Curcumin ... 385
 10.7 Conclusion .. 386
References ... 386

Index ... 393
Therapeutic Potentials of Curcumin for Alzheimer Disease
Farooqui, A.A.
2016, XIX, 402 p. 90 illus., 45 illus. in color., Hardcover
ISBN: 978-3-319-15888-4