Contents

1 Introduction ... 1
 1.1 A Brief History of Quantum Mechanics 1
 1.2 Revolutionary Concepts of Quantum Mechanics 5
 1.3 Quantum Information ... 7
 1.4 Content of the Book .. 10
 1.5 Suggested Paths .. 13
 1.6 Conventions on Notation 14
References .. 16

Part I Fundamentals

2 Vector and Hilbert Spaces ... 21
 2.1 Introduction ... 21
 2.2 Vector Spaces ... 22
 2.3 Inner-Product Vector Spaces 25
 2.4 Definition of Hilbert Space 29
 2.5 Linear Operators .. 33
 2.6 Eigenvalues and Eigenvectors 38
 2.7 Outer Product. Elementary Operators 40
 2.8 Hermitian and Unitary Operators 44
 2.9 Projectors .. 47
 2.10 Spectral Decomposition Theorem (EID) 54
 2.11 The Eigendecomposition (EID) as Diagonalization 60
 2.12 Functional Calculus .. 62
 2.13 Tensor Product .. 67
 2.14 Other Fundamentals Developed Throughout the Book 74
References .. 75
3 Elements of Quantum Mechanics .. 77
3.1 Introduction ... 77
3.2 The Environment of Quantum Mechanics 78
3.3 On the Statistical Description of a Closed Quantum System 81
3.4 Dynamical Evolution of a Quantum System 86
3.5 Quantum Measurements ... 91
3.6 Measurements with Observables 98
3.7 Generalized Quantum Measurements (POVM) 102
3.8 Summary of Quantum Measurements 105
3.9 Combined Measurements .. 106
3.10 Composite Quantum Systems 111
3.11 Nonuniqueness of the Density Operator Decomposition 117
3.12 Revisiting the Qubit and Its Description 121
References ... 129

Part II Quantum Communications

4 Introduction to Part II: Quantum Communications 133
4.1 A General Scheme of a Telecommunications System 135
4.2 Essential Performances of a Communication System 137
4.3 Classical and Quantum Communications Systems 143
4.4 Scenarios of Classical Optical Communications 146
4.5 Poisson Processes .. 155
4.6 Filtered Poisson Processes ... 158
4.7 Optical Detection: Semiclassical Model 165
4.8 Simplified Theory of Photon Counting and Implementation ... 175
References ... 181

5 Quantum Decision Theory: Analysis and Optimization 183
5.1 Introduction .. 183
5.2 Analysis of a Quantum Communications System 186
5.3 Analysis and Optimization of Quantum Binary Systems 192
5.4 Binary Optimization with Pure States 195
5.5 System Specification in Quantum Decision Theory 203
5.6 State and Measurement Matrices with Pure States 204
5.7 State and Measurement Matrices with Mixed States 204
5.8 Formulation of Optimal Quantum Decision 209
5.9 Holevo’s Theorem ... 211
5.10 Numerical Methods for the Search for Optimal Operators 213
5.11 Kennedy’s Theorem .. 216
5.12 The Geometry of a Constellation of States 221
5.13 The Geometrically Uniform Symmetry (GUS) 230
5.14 Optimization with Geometrically Uniform Symmetry 235
5.15 State Compression in Quantum Detection 238
References ... 248

6 Quantum Decision Theory: Suboptimization 251
6.1 Introduction ... 251
6.2 Square Root Measurements (SRM) 253
6.3 Performance Evaluation with the SRM Decision 257
6.4 SRM with Mixed States 262
6.5 SRM with Geometrically Uniform States (GUS) 265
6.6 SRM with Mixed States Having the GUS 272
6.7 Quantum Compression with SRM 276
6.8 Quantum Chernoff Bound 277
References ... 280

7 Quantum Communications Systems 281
7.1 Introduction ... 281
7.2 Overview of Coherent States 282
7.3 Constellations of Coherent States 287
7.4 Parameters in a Constellation of Coherent States 292
7.5 Theory of Classical Optical Systems 296
7.6 Analysis of Classical Optical Binary Systems 304
7.7 Quantum Decision with Pure States 314
7.8 Quantum Binary Communications Systems 316
7.9 Quantum Systems with OOK Modulation 318
7.10 Quantum Systems with BPSK Modulation 320
7.11 Quantum Systems with QAM Modulation 323
7.12 Quantum Systems with PSK Modulation 331
7.13 Quantum Systems with PPM Modulation 337
7.14 Overview of Squeezed States 348
7.15 Quantum Communications with Squeezed States 354
References ... 358

8 Quantum Communications Systems with Thermal Noise 361
8.1 Introduction ... 361
8.2 Representation of Thermal Noise 363
8.3 Noisy Coherent States as Gaussian States 367
8.4 Discretization of Density Operators 369
8.5 Theory of Classical Optical Systems with Thermal Noise .. 373
8.6 Check of Gaussianity in Classical Optical Detection 376
8.7 Quantum Communications Systems with Thermal Noise 381
Part II Quantum Communications

8.8 Binary Systems in the Presence of Thermal Noise 386
8.9 QAM Systems in the Presence of Thermal Noise 391
8.10 PSK Systems in the Presence of Thermal Noise 395
8.11 PPM Systems in the Presence of Thermal Noise 399
8.12 PPM Performance Evaluation (Without Compression) 404
8.13 PPM Performance Evaluation Using State Compression 408
8.14 Conclusions . 415
References . 420

9 Implementation of QTLC Systems ... 421
9.1 Introduction . 421
9.2 Components for Quantum Communications Systems 423
9.3 Classical Optical Communications Systems 431
9.4 Binary Quantum Communications Systems 433
9.5 Multilevel Quantum Communications Systems 443
References . 446

Part III Quantum Information

10 Introduction to Quantum Information 451
10.1 Introduction . 451
10.2 Partial Trace and Reduced Density Operators 454
10.3 Overview of Entanglement . 457
10.4 Purification of Mixed States . 461
References . 462

11 Fundamentals of Continuous Variables 463
11.1 Introduction . 464
11.2 From Discrete to Continuous in Quantum Mechanics 466
11.3 The Harmonic Oscillator . 473
11.4 Coherent States . 479
11.5 Abstract Formulation of Continuous Quantum Variables . . . 481
11.6 Phase Space Representation: Preliminaries 484
11.7 Phase Space Representation: Definitions for the N-Mode . . . 491
11.8 Phase Space Representations in the Single Mode 499
11.9 Examples of Continuous States in the Single Mode 503
11.10 Gaussian Transformations and Gaussian Unitaries 508
11.11 Gaussian Transformations in the N-Mode 512
11.12 N-Mode Gaussian States . 519
11.13 Normal Ordering of Gaussian Unitaries 522
11.14 Gaussian Transformations in the Single Mode 525
11.15 Single-Mode Gaussian States and Their Statistics 529
11.16 More on Single-Mode Gaussian States 535
Quantum Communications
Ciolaro, G.
2015, XXI, 673 p. 221 illus., 65 illus. in color., Hardcover
ISBN: 978-3-319-15599-9