Contents

1 Introduction .. 1
 1.1 Numerical Simulation and Beyond 2
 1.2 The Need for Reduction 4
 1.3 Reduced Basis Methods for PDEs at a Glance 5
 1.4 Accuracy and Computational Efficiency of RB Methods 7
 1.5 Content of the Book 8

2 Representative Problems: Analysis and (High-Fidelity) Approximation .. 11
 2.1 Four Problems ... 11
 2.1.1 Advection-Diffusion-Reaction Equation 12
 2.1.2 Linear Elasticity Equations 12
 2.1.3 Stokes Equations 13
 2.1.4 Navier-Stokes Equations 13
 2.2 Formulation and Analysis of Variational Problems 14
 2.2.1 Strongly Coercive Problems 14
 2.2.2 Weakly Coercive (or Inf-Sup Stable) Problems ... 16
 2.2.3 Saddle-Point Problems 17
 2.3 Analysis of Three (out of Four) Problems 20
 2.3.1 Advection-Diffusion-Reaction Equation 20
 2.3.2 Linear Elasticity Equations 22
 2.3.3 Stokes Equations 22
 2.4 On the Numerical Approximation of Variational Problems 23
 2.4.1 Strongly Coercive Problems 23
 2.4.2 Algebraic Form of \(P_1 \) 25
 2.4.3 Computation of the Discrete Coercivity Constant . 26
 2.4.4 Weakly Coercive Problems 27
 2.4.5 Algebraic Form of \(P_2 \) 29
 2.4.6 Computation of the Discrete Inf-Sup Constant 30
 2.4.7 Saddle-Point Problems 31
 2.4.8 Algebraic Form of \(P_3 \) 33
Contents

1. **Finite Element Spaces** .. 33
2. **Exercises** .. 35

3 RB Methods: Basic Principles, Basic Properties

- 3.1 Parametrized PDEs: Formulation and Assumptions 39
- 3.2 High-Fidelity Discretization Techniques 41
- 3.3 Reduced Basis Methods 43
 - 3.3.1 Galerkin RB Method 45
 - 3.3.2 Least-Squares RB Method 48
- 3.4 Algebraic Form of Galerkin and Least-Squares RB Problems 51
 - 3.4.1 Galerkin RB Case 51
 - 3.4.2 Least-Squares RB Case 54
- 3.5 Reduction of Computational Complexity: Offline/Online ... 55
- 3.6 A Posteriori Error Estimation 56
 - 3.6.1 A Relationship between Error and Residual 57
 - 3.6.2 Error Bound ... 59
- 3.7 Practical (and Efficient) Computation of Error Bounds ... 60
 - 3.7.1 Computing the Norm of the Residual 61
 - 3.7.2 Computing the Stability Factor by the Successive Constraint Method 62
 - 3.7.3 Computing the Stability Factor by Interpolatory Radial Basis Functions 65
- 3.8 An Illustrative Numerical Example 67
- 3.9 Exercises .. 71

4 On the Algebraic and Geometric Structure of RB Methods

- 4.1 Algebraic Construction and Interpretation 73
 - 4.1.1 Algebraic Interpretation of the G-RB Problem 74
 - 4.1.2 Algebraic properties of the G-RB Problem 75
 - 4.1.3 Least-Squares and Petrov-Galerkin RB Problems 77
- 4.2 Geometric Interpretation 79
 - 4.2.1 Projection and Bases 79
 - 4.2.2 Matrix Characterization of Projection Operators 80
 - 4.2.3 Orthogonal and Oblique Projection Operators 81
 - 4.2.4 The Galerkin Case 82
 - 4.2.5 The Petrov-Galerkin Case 84
- 4.3 Exercises .. 86

5 The Theoretical Rationale Behind

- 5.1 The Solution Manifold 87
- 5.2 When is a Problem Reducible? 89
- 5.3 Smoothness of the Solution Set 90
 - 5.3.1 Continuity and Compactness 90
Contents

5.3.2 Differentiability of the Solution Map and Sensitivity Equations ... 93
5.4 Dimensionality of the Solution Set .. 96
5.5 Dimensionality and Analyticity .. 98
 5.5.1 Analyticity of the Solution Map: an Instance 98
 5.5.2 Kolmogorov n-width and Analyticity 101
5.6 Kolmogorov n-width and Parametric Complexity 104
5.7 Lagrange, Taylor and Hermite RB Spaces 109
5.8 Exercises ... 111

6 Construction of RB Spaces by SVD-POD ... 115
 6.1 Basic Notions on Singular Value Decomposition 115
 6.1.1 SVD and Low-Rank Approximations 117
 6.2 Interlude .. 119
 6.2.1 Image Compression .. 119
 6.2.2 Principal Component Analysis 121
 6.3 Proper Orthogonal Decomposition ... 123
 6.3.1 POD for Parametrized Problems 124
 6.3.2 POD with Energy Inner Product 127
 6.4 \mathcal{P}-continuous Analogue of POD 128
 6.5 Back to the Discrete Setting .. 133
 6.6 Our Illustrative Numerical Example Revisited 135
 6.7 More on Reducibility .. 136
 6.8 Exercises ... 139

7 Construction of RB Spaces by the Greedy Algorithm 141
 7.1 Greedy Algorithm: an Algebraic Perspective 141
 7.1.1 The Idea Behind Greedy Algorithms 142
 7.1.2 The Weak Greedy Algorithm .. 142
 7.2 Our Illustrative Numerical Example Revisited 145
 7.3 An Abstract Formulation of the Greedy Algorithm 147
 7.4 A Priori Error Analysis .. 150
 7.5 Numerical Assessment of a Priori Convergence Results 151
 7.6 Exercises ... 154

8 RB Methods in Action: Setting up the Problem 155
 8.1 Going from the Original to the Reference Domain 155
 8.2 Change of Variables Formulas .. 156
 8.2.1 Extension to the Vector Case 159
 8.3 Advection-Diffusion-Reaction, Case I: Heat Transfer 159
 8.3.1 Reference Configuration and Affine Transformations 161
 8.3.2 Weak Formulation on the Reference Domain 162
 8.3.3 Dealing with Nonhomogeneous Boundary Conditions 164
 8.4 Advection-Diffusion-Reaction, Case II: Mass Transfer with 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Advection-Diffusion-Reaction, Case III: Mass Transfer in a Parametrized Domain</td>
<td>167</td>
</tr>
<tr>
<td>8.5.1</td>
<td>More on the Transformation of Vector Fields</td>
<td>170</td>
</tr>
<tr>
<td>8.6</td>
<td>Linear Elasticity: An Elastic Beam</td>
<td>172</td>
</tr>
<tr>
<td>8.7</td>
<td>Fluid Flows, Case I: Backward-Facing Step Channel</td>
<td>173</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Reference Domain and Affine Transformation</td>
<td>175</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Weak Formulation on the Reference Domain</td>
<td>176</td>
</tr>
<tr>
<td>8.8</td>
<td>Fluid Flows, Case II: Sudden Expansion Channel</td>
<td>177</td>
</tr>
<tr>
<td>8.9</td>
<td>Problems’ Features at a Glance</td>
<td>178</td>
</tr>
<tr>
<td>8.10</td>
<td>Exercises</td>
<td>179</td>
</tr>
<tr>
<td>9</td>
<td>RB Methods in Action: Computing the Solution</td>
<td>181</td>
</tr>
<tr>
<td>9.1</td>
<td>Heat Transfer: Results</td>
<td>181</td>
</tr>
<tr>
<td>9.2</td>
<td>An Elastic Beam: Results</td>
<td>184</td>
</tr>
<tr>
<td>9.3</td>
<td>Backward-Facing Step Channel, Stokes Flow: Results</td>
<td>186</td>
</tr>
<tr>
<td>9.3.1</td>
<td>RB Approximation of Parametrized Stokes Equations</td>
<td>187</td>
</tr>
<tr>
<td>9.3.2</td>
<td>A Posteriori Error Estimation</td>
<td>190</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Numerical Results: Backward-Facing Step Channel</td>
<td>191</td>
</tr>
<tr>
<td>10</td>
<td>Extension to Nonaffine Problems</td>
<td>193</td>
</tr>
<tr>
<td>10.1</td>
<td>Empirical Interpolation Method</td>
<td>193</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Polynomial Interpolation vs. Empirical Interpolation</td>
<td>194</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Empirical Interpolation</td>
<td>195</td>
</tr>
<tr>
<td>10.1.3</td>
<td>EIM Algorithm</td>
<td>196</td>
</tr>
<tr>
<td>10.2</td>
<td>Error Analysis for the Empirical Interpolation</td>
<td>199</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Practical Implementation</td>
<td>201</td>
</tr>
<tr>
<td>10.3</td>
<td>Discrete Empirical Interpolation</td>
<td>203</td>
</tr>
<tr>
<td>10.4</td>
<td>EIM-G-RB Approximation of Nonaffine Problems</td>
<td>205</td>
</tr>
<tr>
<td>10.5</td>
<td>Mass Transfer with Parametrized Source: Results</td>
<td>208</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Comparison of EIM and DEIM</td>
<td>209</td>
</tr>
<tr>
<td>10.5.2</td>
<td>(DE)EIM-G-RB Approximation</td>
<td>210</td>
</tr>
<tr>
<td>10.6</td>
<td>Mass Transfer in a Parametrized Domain: Results</td>
<td>212</td>
</tr>
<tr>
<td>10.7</td>
<td>Exercises</td>
<td>213</td>
</tr>
<tr>
<td>11</td>
<td>Extension to Nonlinear Problems</td>
<td>215</td>
</tr>
<tr>
<td>11.1</td>
<td>Parametrized Nonlinear PDEs</td>
<td>215</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Navier-Stokes Equations</td>
<td>217</td>
</tr>
<tr>
<td>11.1.2</td>
<td>A Semilinear Elliptic PDE</td>
<td>218</td>
</tr>
<tr>
<td>11.2</td>
<td>High-Fidelity Approximation</td>
<td>219</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Newton’s Method</td>
<td>220</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Algebraic Formulation</td>
<td>221</td>
</tr>
<tr>
<td>11.3</td>
<td>Reduced Basis Approximation</td>
<td>222</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Algebraic Formulation</td>
<td>223</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Galerkin Projection</td>
<td>224</td>
</tr>
<tr>
<td>11.3.3</td>
<td>LS-RB: Newton then Least-Squares</td>
<td>224</td>
</tr>
</tbody>
</table>
11.3.4 LS-RB Revisited: Least-Squares then Gauss-Newton 225
11.4 Reduction of Computational Complexity 226
11.5 A Posteriori Error Estimation for Nonlinear Problems 228
11.6 Application to the Steady Navier-Stokes Equations 232
 11.6.1 RB Approximation of the Navier-Stokes Equations 233
 11.6.2 A posteriori Error Estimation 235
11.7 Numerical Results: Backward-Facing Step Channel 235
11.8 Numerical Results: Sudden Expansion Channel 237
11.9 Numerical results: a Simplified Bypass Graft 239
11.10 Exercises 242

12 Reduction and Control 245
 12.1 Parameter-Dependent PDE-Constrained Optimization 245
 12.2 Parametric Optimization Problems 248
 12.2.1 Reduction Strategies 251
 12.3 Application to an Optimal Flow Control Problem 253
 12.4 Parametrized Optimal Control Problems 256
 12.4.1 Reduction Strategies 257
 12.4.2 A posteriori Error Estimation 260
 12.5 Application to an Optimal Heat Transfer Problem 261

Appendix A Basic Theoretical Tools 265
 A.1 Linear Maps, Functionals and Bilinear Forms 265
 A.2 Hilbert Spaces 268
 A.3 Adjoint Operators 269
 A.4 Compact Operators 270
 A.5 Differentiation in Linear Spaces 272
 A.6 Sobolev Spaces 273
 A.6.1 Square-Integrable Functions 274
 A.6.2 The Spaces \(H^1(\Omega) \) and \(H_0^1(\Omega) \) 274
 A.7 Bochner Spaces 277
 A.8 Polynomial Interpolation and Orthogonal Polynomials 277

References 281

Index 293
Reduced Basis Methods for Partial Differential Equations
An Introduction
Quarteroni, A.; Manzoni, A.; Negri, F.
2016, XI, 296 p., Softcover
ISBN: 978-3-319-15430-5