Contents

1 Introduction ... 1

2 A Toy Language for Concurrency 7
 2.1 A Toy Language ... 7
 2.2 Semantics of Programs ... 10
 2.2.1 Graphs .. 11
 2.2.2 The Transition Graph ... 13
 2.2.3 Operational Semantics .. 16
 2.3 Verifying Programs ... 20
 2.3.1 Correctness Properties ... 20
 2.3.2 Reachability in Concurrent Programs 21

3 Truly Concurrent Models of Programs with Resources 25
 3.1 Modeling Resources in the Language 25
 3.1.1 Taming Concurrency .. 25
 3.1.2 Extending the Language with Resources 27
 3.2 State Spaces for Conservative Resources 29
 3.2.1 Conservative Programs .. 29
 3.2.2 Transition Graphs for Conservative Programs 31
 3.3 Asynchronous Semantics .. 36
 3.3.1 Toward True Concurrency 36
 3.3.2 Asynchronous Semantics 37
 3.3.3 Coherent Programs .. 41
 3.3.4 Programs with Mutexes Only 46
 3.4 Cubical Semantics ... 49
 3.4.1 Precubical Sets .. 49
 3.4.2 The Geometric Realization 54
 3.5 Historical Notes ... 55
4 Directed Topological Models of Concurrency .. 57
 4.1 Directed Spaces ... 57
 4.1.1 A Definition .. 58
 4.1.2 Limits and Colimits ... 59
 4.1.3 Directed Geometric Semantics .. 61
 4.1.4 Simple Programs ... 66
 4.2 Homotopy in Directed Algebraic Topology 67
 4.2.1 Classical Homotopy Theory .. 67
 4.2.2 Homotopy Between Directed Paths in Dimension 2 68
 4.2.3 Dihomotopy and the Fundamental Category 70
 4.2.4 Simple Programs with Mutexes 76
 4.2.5 D-Homotopy ... 79
 4.3 Constructions on the Fundamental Category 80
 4.3.1 The Seifert–Van Kampen Theorem 80
 4.3.2 The Universal Dicovering Space 81
 4.4 Historical Notes and Other Models .. 89

5 Algorithmics on Directed Spaces .. 91
 5.1 The Boolean Algebra of Cubical Regions 92
 5.2 Computing Deadlocks .. 95
 5.3 Factorizing Programs ... 101

6 The Category of Components ... 105
 6.1 Weak Isomorphisms .. 108
 6.1.1 Systems of Weak Isomorphisms 108
 6.1.2 A Maximal System ... 110
 6.1.3 Quotienting by Weak Isomorphisms 111
 6.1.4 Other Definitions ... 115
 6.2 Examples of Categories of Components 117
 6.2.1 Trees ... 117
 6.2.2 Cubical Regions in Dimension 2 118
 6.2.3 The Floating Cube and Cross 119
 6.3 Computing Components ... 120
 6.3.1 The Case of One Hole .. 120
 6.3.2 The General Case ... 121
 6.3.3 The Seifert–Van Kampen Theorem 124
 6.4 Historical Notes, Applications, and Extensions 125
 6.4.1 Categories with Loops ... 126
 6.4.2 Past and Future Components ... 127

7 Path Spaces ... 129
 7.1 An Algorithm for Computing Components of Trace Spaces 130
 7.1.1 Path Spaces for Simple Programs 130
 7.1.2 The Index Poset ... 131
 7.1.3 Determination of Dipath Classes 134
 7.1.4 An Efficient Implementation .. 138
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Combinatorial Models for Path Spaces</td>
<td>139</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Contractibility of Restricted Path Spaces</td>
<td>139</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Presimplicial Sets and the Nerve Theorem</td>
<td>141</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Path Space as a Prod-Simplicial Complex</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Perspectives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
Directed Algebraic Topology and Concurrency
Fajstrup, L.; Goubault, E.; Haucourt, E.; Mimram, S.; Raussen, M.
2016, XI, 167 p. 1 illus., Hardcover
ISBN: 978-3-319-15397-1