Contents

1 Essentials of Fractional Calculus .. 1
1.1 Riemann-Liouville Fractional Integrals. .. 1
1.2 Riemann-Liouville and Caputo Fractional Derivatives 3
1.3 Riesz Fractional Operators ... 5
References ... 10

2 Fractional Heat Conduction and Related Theories of Thermoelasticity .. 13
2.1 Time and Space Nonlocality. ... 13
2.2 Nonlocal Generalizations of the Fourier Law 14
2.3 Theories of Fractional Thermoelasticity ... 21
2.4 Initial and Boundary Conditions .. 24
2.5 Representation of Thermal Stresses .. 28
References ... 31

3 Thermoelasticity Based on Time-Fractional Heat Conduction Equation in Polar Coordinates 35
3.1 Fundamental Solutions to Axisymmetric Problems for an Infinite Solid. ... 35
3.1.1 Statement of the Problem. ... 35
3.1.2 The First Cauchy Problem ... 36
3.1.3 The Second Cauchy Problem ... 41
3.1.4 The Source Problem ... 42
3.2 Delta-Pulse at the Origin ... 52
3.2.1 The First Cauchy Problem ... 52
3.2.2 The Second Cauchy Problem ... 54
3.2.3 The Source Problem ... 54
3.3 Radial Heat Conduction in a Cylinder and Associated Thermal Stresses .. 55
3.3.1 Formulation of the Problem ... 56
3.3.2 Solution to the Dirichlet Problem 58
3.3.3 Heat Flux at the Surface 67

3.4 Radial Heat Conduction in an Infinite Medium
with a Cylindrical Hole .. 70
3.4.1 Statement of the Problem 70
3.4.2 The Dirichlet Boundary Condition for Temperature ... 72
3.4.3 Heat Flux at the Surface 75

3.5 Appendix: Integrals ... 80
References ... 84

4 Axisymmetric Problems in Cylindrical Coordinates 87
4.1 Thermal Stresses in a Long Cylinder 87
4.1.1 Statement of the Problem 87
4.1.2 The Dirichlet Boundary Condition 88
4.1.3 Heat Flux at the Surface 95

4.2 Thermal Stresses in an Infinite Medium with a Long
Cylindrical Hole .. 96
4.2.1 Statement of the Problem 96
4.2.2 The Dirichlet Boundary Condition 97
4.2.3 Heat Flux at the Surface 100

4.3 Axisymmetric Problems for a Half-Space 102
4.3.1 Fundamental Solution to the Dirichlet Problem 102
4.3.2 Constant Boundary Value of Temperature
in a Local Area .. 107
4.3.3 Fundamental Solution to the Physical Neumann
Problem .. 109
4.3.4 Constant Boundary Value of the Heat Flux
in a Local Area .. 112

4.4 Appendix: Integrals ... 113
References ... 115

5 Thermoelasticity Based on Time-Fractional Heat Conduction
Equation in Spherical Coordinates 117
5.1 Fundamental Solutions to Central Symmetric Problems
in an Infinite Solid .. 117
5.1.1 Statement of the Problem 117
5.1.2 The First Cauchy Problem 118
5.1.3 The Second Cauchy Problem 122
5.1.4 The Source Problem 123

5.2 Delta-Pulse at the Origin 131
5.2.1 The First Cauchy Problem 131
5.2.2 The Second Cauchy Problem 132
5.2.3 The Source Problem 133
5.3 Radial Heat Conduction in a Sphere and Associated Thermal Stresses. 135
 5.3.1 Formulation of the Problem 137
 5.3.2 Fundamental Solution to the Dirichlet Problem 138
 5.3.3 Constant Boundary Condition for Temperature 141
 5.3.4 Fundamental Solution to the Physical Neumann Problem 145
 5.3.5 Constant Boundary Value of the Heat Flux 150

5.4 Heat Conduction in a Body with a Spherical Cavity and Associated Thermal Stresses. 151
 5.4.1 Formulation of the Problem 151
 5.4.2 Fundamental Solution to the Dirichlet Problem 152
 5.4.3 Constant Boundary Value of Temperature 155
 5.4.4 Fundamental Solution to the Physical Neumann Problem 158
 5.4.5 Constant Boundary Value of the Heat Flux 160
 5.4.6 Fundamental Solution to the Mathematical Neumann Problem 161
 5.4.7 Constant Boundary Value of the Normal Derivative of Temperature 163

5.5 Appendix: Integrals 167

References 168

6 Thermoelasticity Based on Space-Time-Fractional Heat Conduction Equation 171
 6.1 Fundamental Solutions to Axisymmetric Problems in Polar Coordinates 171
 6.1.1 Statement of the Problem 171
 6.1.2 The First Cauchy Problem 172
 6.1.3 The Second Cauchy Problem 176
 6.1.4 The Source Problem 179
 6.2 Fundamental Solutions to Central Symmetric Problems in Spherical Coordinates 181
 6.2.1 The First Cauchy Problem 181
 6.2.2 The Second Cauchy Problem 184
 6.2.3 The Source Problem 186

References 190

7 Thermoelasticity Based on Fractional Telegraph Equation 191
 7.1 Time-Fractional Telegraph Equation 191
 7.1.1 Statement of the Problem 191
 7.1.2 Solution in One-Dimensional Case 192
 7.1.3 Solution in the Axially Symmetric Case 195
 7.1.4 Solution in the Central Symmetric Case 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Space-Time-Fractional Telegraph Equation</td>
<td>205</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
<tr>
<td>8 Fractional Thermoelasticity of Thin Shells</td>
<td>211</td>
</tr>
<tr>
<td>8.1 Thin Shells</td>
<td>211</td>
</tr>
<tr>
<td>8.2 Averaged Heat Conduction Equation</td>
<td>214</td>
</tr>
<tr>
<td>8.3 Generalized Boundary Conditions of Nonperfect Thermal Contact</td>
<td>221</td>
</tr>
<tr>
<td>References</td>
<td>224</td>
</tr>
<tr>
<td>9 Fractional Advection-Diffusion Equation and Associated Diffusive Stresses</td>
<td>227</td>
</tr>
<tr>
<td>9.1 Fractional Advection-Diffusion Equation</td>
<td>227</td>
</tr>
<tr>
<td>9.2 Theory of Diffusive Stresses</td>
<td>230</td>
</tr>
<tr>
<td>9.3 Time-Fractional Advection-Diffusion Equation in the Case of One Spatial Variable</td>
<td>231</td>
</tr>
<tr>
<td>9.3.1 Fundamental Solution to the Cauchy Problem</td>
<td>231</td>
</tr>
<tr>
<td>9.3.2 Fundamental Solution to the Source Problem</td>
<td>232</td>
</tr>
<tr>
<td>9.4 Time-Fractional Advection-Diffusion Equation in a Plane</td>
<td>236</td>
</tr>
<tr>
<td>9.4.1 Fundamental Solution to the Cauchy Problem</td>
<td>236</td>
</tr>
<tr>
<td>9.4.2 Fundamental Solution to the Source Problem</td>
<td>241</td>
</tr>
<tr>
<td>9.5 Time-Fractional Advection-Diffusion in a Space</td>
<td>243</td>
</tr>
<tr>
<td>9.5.1 Fundamental Solution to the Cauchy Problem</td>
<td>243</td>
</tr>
<tr>
<td>9.5.2 Fundamental Solution to the Source Problem</td>
<td>246</td>
</tr>
<tr>
<td>References</td>
<td>247</td>
</tr>
<tr>
<td>Index</td>
<td>251</td>
</tr>
</tbody>
</table>
Fractional Thermoelasticity
Povstenko, Y.
2015, XII, 253 p. 150 illus., Hardcover
ISBN: 978-3-319-15334-6