Contents

1 Introduction ... 1
 1.1 Resonance Structures. ... 1
 1.2 Scattering Matrix .. 3
 1.3 Method for Approximate Computation of Scattering Matrices 6
 1.4 Asymptotic and Numerical Studies of Resonant Tunneling
 Resonant Tunneling in 2D Waveguides for Electrons
 of Small Energy .. 7
 1.5 The Impact of a Finite Waveguide Work Function
 on Resonant Tunneling .. 11
 1.6 Asymptotic Study of Resonant Tunneling in 3D
 Waveguides for Electrons of Small Energy 11
 1.7 Electron Resonant Tunneling in the Presence
 of Magnetic Fields ... 12
 1.8 Numerical Simulation of High Energy Electron Resonant
 Tunneling, the Fano Resonances 13
 1.9 Asymptotic Analysis of Multichannel Resonant Tunneling 14
 1.10 Electronics Devices Based on Resonant Tunneling
 in Waveguides of Variable Cross-Sections 14

2 Waveguides. Radiation Principle. Scattering Matrices 15
 2.1 Boundary Value Problem in a Cylinder 17
 2.1.1 Statement of the Problem. Operator Pencil 17
 2.1.2 The Solvability of the Problem in a Cylinder 22
 2.1.3 Asymptotics of Solutions 23
 2.2 Problem in a Domain G with Cylindrical Ends 27
 2.2.1 Statement and Fredholm Property of the Problem 27
 2.2.2 Asymptotics of Solutions 28
 2.2.3 Properties of the Index \(\text{Ind} A_\beta(\mu) \) and
 of the Spaces \(\ker A_\beta(\mu) \) and \(\text{coker} A_\beta(\mu) \) 29
 2.2.4 Calculation of the Coefficients in the Asymptotics ... 31
2.3 Waves and Scattering Matrices .. 35
 2.3.1 Waves .. 35
 2.3.2 Continuous Spectrum Eigenfunctions.
 The Scattering Matrix ... 37
 2.3.3 The Intrinsic Radiation Principle 39

3 Properties of Scattering Matrices in a Vicinity of Thresholds 41
 3.1 Augmented Space of Waves 42
 3.1.1 Waves in a Cylinder 42
 3.1.2 Waves in Domain G 45
 3.2 Continuous Spectrum Eigenfunctions. Scattering Matrices 46
 3.2.1 Intrinsic and Expanded Radiation Principles 46
 3.2.2 Analyticity of Scattering Matrices with Respect
 to Spectral Parameter 51
 3.3 Other Properties of the Scattering Matrices 56
 3.3.1 The Connection Between $S(\mu)$
 and $S(\tilde{\mu})$ for $\tau' < \mu < \tau$ 56
 3.3.2 The Connection Between $S(\mu)$
 and $S(\tilde{\mu})$ for $\tau < \mu < \tau''$ 58
 3.3.3 The Limits of $S(\mu)$ as $\mu \to \tau \pm 0$ 62

4 Method for Computing Scattering Matrices 67
 4.1 A Method for Computing Scattering Matrices Outside
 Thresholds ... 67
 4.1.1 Statement of the Method 67
 4.1.2 The Problem in GR 69
 4.1.3 Justification of the Method for Computing
 the Scattering Matrix 71
 4.2 A Method for Computing Scattering Matrices
 in Vicinity of Thresholds 75

5 Asymptotic and Numerical Studies of Resonant Tunneling
 in 2D-Waveguides for Electrons of Small Energy 81
 5.1 Statement of the Problem 81
 5.2 Limit Problems .. 84
 5.2.1 First Kind Limit Problems 84
 5.2.2 Second Kind Limit Problems 86
 5.3 Special Solutions to the First Kind Homogeneous Problems 87
 5.4 Asymptotic Formulas ... 90
 5.4.1 Asymptotics of the Wave Function 91
 5.4.2 Formulas for \tilde{S}_{11}, \tilde{S}_{12}, and C_{ij} 92
 5.4.3 Formulas for Resonant Tunneling Characteristics 98
5.5 Justification of the Asymptotics 99
5.6 Comparison of Asymptotic and Numerical Results 110
5.6.1 Problems and Methods for Numerical Analysis 110
5.6.2 Comparison of Asymptotic and Numerical Results 114
5.7 The Impact of a Finite Waveguide Work Function
on Resonant Tunneling .. 116
5.7.1 Preliminaries ... 116
5.7.2 A Qualitative Analysis of a Finite Work Function
Impact on Electron Transport 119
5.7.3 Numerical Simulation of Resonant Tunneling
with Regard to the Waveguide Work Function 121

6 Asymptotics of Resonant Tunneling in 3D Waveguides
for Electrons of Small Energy 127
6.1 Statement of the Problem and Outline of the Results 127
6.2 Limit Problems .. 130
6.2.1 First Kind Limit Problems 130
6.2.2 Second Kind Limit Problems 132
6.3 Tunneling in a Waveguide with One Narrow 133
6.3.1 Special Solutions to the First Kind
Homogeneous Problems 134
6.3.2 Passing Through the Narrow 136
6.3.3 Formal Asymptotics 139
6.3.4 The Estimate of the Remainder 142
6.4 Tunneling in a Waveguide with Two Narrows 145
6.4.1 Special Solutions to the Problem in the Resonator ... 145
6.4.2 Formal Asymptotics 146
6.4.3 The Estimate of the Remainder 154

7 Resonant Tunneling in 2D Waveguides in Magnetic Field 163
7.1 Statement of the Problem 163
7.2 The Limit Problems .. 166
7.2.1 First Kind Limit Problems 166
7.2.2 Second Kind Limit Problems 168
7.3 Special Solutions to Homogeneous First Kind
Limit Problems ... 169
7.4 Asymptotic Formulas .. 172
7.4.1 Asymptotics of the Wave Function 173
7.4.2 Formulas for \tilde{S}_{11}, \tilde{S}_{12}, and C_{ij} 174
7.4.3 Formulas for Resonant Tunneling Characteristics 178
7.5 Justification of the Asymptotics 179
8 Effect of Magnetic Field on Resonant Tunneling in 3D Waveguides of Variable Cross-Section

8.1 Introduction ... 197
8.2 Statement of the Problem 198
8.3 Limit Problems ... 201
 8.3.1 First Kind Limit Problems 201
 8.3.2 Second Kind Limit Problems 203
8.4 Special Solutions of Limit Problems 205
8.5 Asymptotic Formulas 207
 8.5.1 The Asymptotics of a Wave Function 207
 8.5.2 Formulas for \tilde{S}_{11}, \tilde{S}_{12}, and C_{11}, \ldots, C_{14} 209
 8.5.3 Asymptotics for Resonant Tunneling
 Characteristics ... 212
8.6 Justification of the Asymptotics 214

9 Numerical Simulation of High Energy Electron Transport

9.1 Numerical Simulation of Multichannel Resonant Tunneling 223
 9.1.1 Closed Resonator 223
 9.1.2 The Method for Computing Scattering Matrix 224
 9.1.3 Discussion of Numerical Results 227
9.2 Fano Resonances .. 233

10 Asymptotic Analysis of Multichannel Resonant Tunneling

10.1 Statement of the Problem and Limit Problems 239
10.2 Tunneling in a Waveguide with One Narrow 242
 10.2.1 Special Solutions to the First Kind
 Homogeneous Problems 242
 10.2.2 Asymptotic Formulas 244
10.3 Tunneling in a Waveguide with Two Narrows 248
 10.3.1 Formal Asymptotics 248
 10.3.2 The Estimate of the Remainder 254
11 Electronics Devices Based on Resonant Tunneling 259
 11.1 Magnetic Field Sensors Based on Quantum Waveguides 260
 11.2 Transistors Based on Quantum Waveguides 264
 11.3 Electron Flow Switch for Quantum Nets 267

Bibliographical Sketch .. 271

Bibliography .. 273
Resonant Tunneling
Quantum Waveguides of Variable Cross-Section, Asymptotics, Numerics, and Applications
Baskin, L.; Neittaanmaki, P.; Plamenevskii, B.A.; Sarafanov, O.
2015, XI, 275 p. 65 illus., Hardcover
ISBN: 978-3-319-15104-5