Contents

1 Materials and Structures for Nonlinear Photonics 1
 Xin Gai, Duk-Yong Choi, Steve Madden and Barry Luther-Davies
 1.1 Introduction ... 1
 1.2 All-Optical Processing Using \(\chi^{(2)} \) Nonlinearities 4
 1.3 All-Optical Processing Using \(\chi^{(3)} \) Nonlinearities 8
 1.3.1 Properties of \(\chi^{(3)} \) Materials and Devices 10
 1.4 All-Optical Processing in Semiconductor Optical Amplifiers 18
 1.4.1 Types and Origins of Nonlinear Effects
 in Semiconductor Optical Amplifiers 18
 1.4.2 Impairments in SOA Devices 19
 1.4.3 Current State of the Art and Future Prospects
 for SOA Nonlinear Processing 23
 References ... 26

2 CMOS Compatible Platforms for Integrated Nonlinear Optics ... 35
 David J. Moss and Roberto Morandotti
 2.1 Introduction .. 35
 2.2 Platforms ... 38
 2.3 Low Power Nonlinear Optics in Ring Resonators 46
 2.4 Microresonator-Based Frequency Combs 48
 2.5 Advanced Frequency Comb Generation 53
 2.6 Supercontinuum Generation .. 55
 2.7 Comb Coherence and Dynamic Properties 56
 2.8 Ultrashort Pulsed Modelocked Lasers 60
 2.9 Ultrafast Phase Sensitive Pulse Measurement 60
 2.10 Conclusions ... 65
 References ... 66
3 Optical Guided Wave Switching

Costantino De Angelis, Daniele Modotto, Andrea Locatelli and Stefan Wabnitz

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction: Optical Switching Using Guided-Waves</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>All-Optical Pulse Switching in Optical Fibers</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Nonlinear Mode Coupling</td>
<td>72</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Nonlinear Fiber Couplers</td>
<td>74</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Nonlinear Mach-Zehnder Interferometers</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Nonlinear Loop Mirrors</td>
<td>78</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Nonlinear Passive Loop Resonators</td>
<td>81</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Optical Soliton Switching</td>
<td>82</td>
</tr>
<tr>
<td>3.3</td>
<td>Optical Switching in Integrated Optical Waveguide Structures</td>
<td>83</td>
</tr>
<tr>
<td>3.3.1</td>
<td>All-Optical Switching in Photonic Crystal Couplers</td>
<td>83</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Graphene-Assisted Control of Coupling Between Surface Plasmon Polaritons</td>
<td>90</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Graphene-Assisted Control of Coupling Between Optical Waveguides</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>99</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

4 Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers

Sonia Boscolo, Julien Fatome, Sergei K. Turitsyn, Guy Millot and Christophe Finot

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>4.2</td>
<td>Pulse Propagation in Optical Fibers</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Pulse Shaping in Normally Dispersive Fibers: From the Generation of Specialized Temporal Waveforms to Spectral Sculpturing</td>
<td>108</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Generation of Specialized Temporal Waveforms</td>
<td>108</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Spectral Sculpturing</td>
<td>112</td>
</tr>
<tr>
<td>4.4</td>
<td>Pulse Shaping in the Anomalous Dispersion Regime: From Ultrashort Temporal Structures to Ultra-Broad Spectra</td>
<td>115</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Generation of High-Repetition-Rate Ultrashort Pulses</td>
<td>115</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Generation of Frequency-Tunable Pulses</td>
<td>117</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Supercontinuum Generation and Optical Rogue Waves</td>
<td>119</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions and Perspectives</td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>123</td>
</tr>
</tbody>
</table>
5 Optical Regeneration 129
 Francesca Parmigiani, Radan Slavik, Joseph Kakande,
 Periklis Petropoulos and David Richardson
 5.1 Introduction to Optical Regeneration 129
 5.2 Optical Regenerators for Simple Amplitude
 Encoded Signals 130
 5.3 Regeneration of Phase-Only Encoded Signals 134
 5.3.1 Modulation Format Specific PSA Regenerators 138
 5.3.2 Modulation Format Transparent PSA 144
 5.4 Regeneration of Amplitude and Phase Encoded Signals 145
 5.4.1 Modulation Format Specific PSA Regenerators 146
 5.4.2 Modulation Format Transparent PSA Schemes 150
 5.5 Conclusions 150
 References 151

6 Photonic Signal Processing for Logic and Computation 157
 Antonella Bogoni and Alan Willner
 6.1 Introduction 157
 6.2 Photonic Logic and Computation Functions for Multi-Format
 Data Communication and Storage 158
 6.3 Overview of Nonlinear Processes 158
 6.3.1 Wave Mixing 159
 6.3.2 Phase Modulation 163
 6.4 Enabling Technologies 164
 6.4.1 Optical Fiber 164
 6.4.2 Semiconductor Devices 164
 6.4.3 Photonic Crystals 165
 6.4.4 Periodically Poled Lithium Niobate Waveguides .. 165
 6.4.5 Silicon Devices 165
 6.5 State of the Art for Logic 166
 6.5.1 Overview of Logic Functions
 and Achieved Results 166
 6.5.2 OOK 640 Gbit/s Logic Operations 166
 6.5.3 PSK 160 Gbit/s Logic Functions 168
 6.5.4 Hexadecimal 16PSK Addition 170
 6.6 State of the Art for Computation 171
 6.6.1 Overview of Tapped Delay Lines 171
 6.6.2 Fundamental Tools to Enable Photonic TDL 171
 6.6.3 Optical 1D Correlation Results Using Nonlinearities
 and On-Chip MZIs 173
 6.6.4 Optical WDM Correlator and 2D Correlation 176
 6.6.5 Discrete Fourier Transforms Using Nonlinearities
 and On-Chip MZIs 178
 References 181
7 Wide-Band and Noise-Inhibited Signal Manipulation in Dispersion-Engineered Parametric Mixers 185
Bill P.-P. Kuo and Stojan Radic

7.1 Introduction .. 185

7.2 Fundamentals of Parametric Mixers 187
7.2.1 One-Pump Parametric Mixing 187
7.2.2 Two-Pump Parametric Mixing 189
7.2.3 Signal Processing Functions of Parametric Mixers 190
7.2.4 Effect of Chromatic Dispersion 191

7.3 Dispersion-Stable Waveguide Engineering for Wide-Band Parametric Mixer Synthesis 192
7.3.1 Wide-Band Parametric Mixing—The Atomic-Scale Challenge .. 193
7.3.2 Post-Fabrication Dispersion Fluctuations Rectification ... 193
7.3.3 Waveguide Design Methods for Achieving Intrinsic Dispersion Stability .. 197

7.4 Inhomogeneous Dispersion Engineering for Noise-Inhibited Parametric Mixing 201
7.4.1 Self-seeded Two-Pump Parametric Mixing—Homogeneous Limit .. 201
7.4.2 Inhomogeneous Dispersion Engineering 202
7.4.3 Applications ... 205

7.5 Conclusions .. 210
References ... 211

8 All-Optical Pulse Shaping for Highest Spectral Efficiency 217
Juerg Leuthold and Camille-Sophie Brès

8.1 Introduction .. 217
8.2 Fundamentals .. 218
8.3 Orthogonal Frequency Division Multiplexing (OFDM) 223
8.3.1 OFDM Tx and Rx Implementations 223
8.3.2 Optical Fourier Transform Processors and Optical OFDM .. 227
8.3.3 OFDM Tx and Rx—Experimental Implementations 234
8.4 Nyquist Pulse Shaping 237
8.4.1 Electronic Nyquist Processing 241
8.4.2 Digital Signal Processing Based Generation 243
8.4.3 Optical Processors 244
8.4.4 Implementations .. 252
References ... 257
9 Energy-Efficient Optical Signal Processing Using Optical Time Lenses .. 261
Leif Katsuo Oxenløwe, Michael Galili, Hans Christian Hansen Mulvad, Hao Hu, Pengyu Guan,
Evarist Palushani, Mads Lillieholm and Anders Clausen
9.1.1 Energy-Efficient Optical Signal Processing: Many Bits per Operation 262
9.2 Time-Domain Optical Fourier Transformation/Time Lens Principle ... 266
9.2.1 Time Lens Principle and Time-Domain OFT ... 266
9.2.2 Important OFT/Time Lens References .. 269
9.3 Serial-to-Parallel Conversion .. 270
9.3.1 640 Gbit/s OOK OTDM-to-DWDM Conversion .. 270
9.3.2 Serial-to-Parallel Conversion of Data with Advanced Modulation Formats 273
9.3.3 Wavelength-Preserving Serial-to-Parallel Conversion ... 273
9.3.4 Nyquist-OTDM to “OFDM”-Like Signal Conversion .. 274
9.4 Spectral Telescopes and Applications .. 277
9.4.1 WDM Nonlinear Optical Signal Processing—WDM Grid Manipulation 277
9.4.2 OFDM-to-“DWDM” Conversion by Spectral Magnification ... 280
9.5 Time-Domain Processing .. 284
9.6 Summary ... 286
References ... 287

10 Signal Processing Using Opto-Electronic Devices .. 291
Mary McCarthy, Simon Fabbri and Andrew Ellis
10.1 Introduction .. 291
10.2 Coherent Transponders .. 292
10.2.1 Power Consumption of Opto-Electronic Devices ... 293
10.2.2 Energy Consumption of DSP .. 295
10.3 Link Power Consumption .. 302
10.4 Optical Signal Modulation Using Electro-Optic Modulators ... 306
10.4.1 Pulse Generation Using Electro-Absorption Modulators .. 306
10.4.2 Pulse Generation and Optical Sampling Using Mach Zehnder Modulators 308
10.4.3 Optical Comb Generation ... 310
11 Optical Information Capacity Processing

Mariia Sorokina, Andrew Ellis and Sergei K. Turitsyn

11.1 Introduction: Information Capacity in Optical Communications

11.2 Fundamentals

11.2.1 Shannon Channel Capacity

11.2.2 Numerical Computation of Shannon Capacity

11.3 Linear Additive White Gaussian Noise Channel

11.3.1 Capacity of Linear Additive White Gaussian Noise Channel

11.4 Nonlinear Fiber Channel

11.4.1 Basic Models

11.4.2 Simplified Nonlinear Channel Models

11.5 Optical Signal Processing to Improve Signal Transmission

11.5.1 Introduction

11.5.2 Quasilossless Transmission

11.5.3 Optical Phase Conjugation

11.5.4 Phase-Conjugated Twin Waves

11.5.5 Optical Regeneration

11.6 Conclusion

References

12 Nonlinear Optics for Photonic Quantum Networks

Alex S. Clark, Lukas G. Helt, Matthew J. Collins, Chunle Xiong, Kartik Srinivasan, Benjamin J. Eggleton and Michael J. Steel

12.1 Introduction: Photonic Quantum Networks

12.1.1 Photonic Qubits, Gates and Algorithms

12.2 Nonlinear Optics for Single Photon Generation

12.2.1 Single Photon Sources and the Heralding of Single Photons

12.2.2 Photon Pair Sources and Photon Statistics

12.2.3 Pair Generation Processes in Second-Order Nonlinear Media

12.2.4 Pair Generation Processes in Third-Order Nonlinear Media

12.2.5 Quantum Description of Photon Pair States

12.2.6 Multiplexing: A Route to On-demand Photons

12.3 Nonlinear Optics for Quantum Frequency Conversion

12.3.1 Second-Order Nonlinear Media

12.3.2 Third-Order Nonlinear Media
12.3.3 Future Directions with Quantum
Frequency Conversion 404
12.4 Nonlinear Optics for Quantum Communication 406
 12.4.1 Single Photon Schemes 407
 12.4.2 Entanglement-Based Schemes 408
 12.4.3 Long Distance Quantum Communication 409
12.5 Conclusion ... 412
References ... 412

13 Biphoto n Pulse Shaping ... 423
Joseph M. Lukens and Andrew M. Weiner
13.1 Introduction ... 423
13.2 Classical Pulse Shaping 425
13.3 Biphoto n Pulse Shaping: Theory 428
13.4 Biphoto n Pulse Shaping: Important Experiments 432
 13.4.1 Ultrafast Coincidence Detection 432
 13.4.2 Additional Biphoto n Shaping Experiments 434
13.5 Detailed Example I: Cancellation of Dispersion
or Modulation ... 435
13.6 Detailed Example II: Encoding and Decoding
of Biphoto n Wavepackets 439
13.7 Outlook .. 444
References ... 446

14 Harnessing Nonlinear Optics for Microwave Signal Processing 449
David Marpaung, Ravi Pant and Benjamin J. Eggleton
14.1 Microwave Photonics 449
 14.1.1 MWP System Performance 451
 14.1.2 Integrated Microwave Photonics 452
 14.1.3 Nonlinear Integrated Microwave Photonics 452
14.2 Stimulated Brillouin Scattering 453
 14.2.1 On-Chip SBS ... 453
14.3 Reconfigurable Microwave Filters Using SBS 454
 14.4 SBS Tunable Delay Line and Phase Shifter 458
 14.4.1 On-Chip SBS Tunable Delay Lines 459
 14.4.2 On-Chip SBS Phase Shifter 459
14.5 FWM and XPM for MWP Signal Processing 460
14.6 Future Directions .. 462
 14.6.1 General Purpose Analog Processor 462
 14.6.2 Highly Integrated Tunable RF Filter 464
References ... 464
15 Ultrafast Optical Techniques for Communication

Networks and Signal Processing 469

Bhavin J. Shastri, John Chang, Alexander N. Tait, Matthew P. Chang,
Ben Wu, Mitchell A. Nahmias and Paul R. Prucnal

15.1 Introduction .. 469
 15.1.1 Scenario of Interest 473

15.2 Primer on Antenna Arrays and Beamforming 474
 15.2.1 Narrowband Beamforming 476
 15.2.2 Wideband Beamforming 478

15.3 Microwave Photonic Filters 480
 15.3.1 Requirements for MPFs 481
 15.3.2 Popular MPF Architectures 482
 15.3.3 Optical Technologies for MPFs 484

15.4 Photonic Adaptive Beamformers 485
 15.4.1 State of the Art Photonic Beamformers 486
 15.4.2 Highly Scalable Adaptive Photonic Beamformer 490
 15.4.3 Photonic Beamforming for Physical Layer Security ... 494

15.5 Summary and Concluding Remarks 498

References ... 499

Index .. 505
All-Optical Signal Processing
Data Communication and Storage Applications
Wabnitz, S.; Eggleton, B.J. (Eds.)
2015, XX, 512 p. 266 illus., 172 illus. in color., Hardcover
ISBN: 978-3-319-14991-2