1 Introduction to Heat-Resistant Steels ... 1
 1.1 Conventional Heat-Resistant Steels ... 1
 1.1.1 What Are Heat-Resistant Steels? 1
 1.1.2 Cobalt ... 2
 1.2 Silicon-Bearing High Chromium Heat-Resistant Steels 2
 1.2.1 Why Silicon? ... 2
 1.2.2 δ Ferrite .. 3
 1.2.3 Normalising and Tempering ... 4
 1.3 Nitride-Strengthened Reduced Activation Heat-Resistant Steels 5
 1.3.1 What Is Reduced Activation? 5
 1.3.2 The Case for Nitride ... 5
 1.3.3 Performance Target .. 7
 1.4 Thermal Ageing ... 8
 1.4.1 China Low Activation Martensitic Steel 8
 1.4.2 Nitride-Strengthened Steels 9
 1.5 Microstructural Stability ... 10
 1.5.1 Microstructure .. 11
 1.5.2 Overestimated Creep Strength for High Cr Steels 12
 1.5.3 Laves Phase .. 13
 1.6 Creep ... 14
 1.6.1 Constitutive Equations .. 14
 1.6.2 Modelling of Creep Curve by Continuum Damage Mechanics 15
 1.6.3 Microstructure Evolution During High Temperature Creep 15
 1.6.4 High-Temperature Creep-Rupture of T23 Steel Used for Ultra-Supercritical Power Plant .. 16
 1.7 Hot Deformation ... 17
References ... 18
Part I Microstructure and Mechanical Properties

2 Conventional Heat-Resistant Steels

2.1 Key Alloying Elements and Alloy-Design Philosophy of 9–12Cr Steels

2.2 Slope Change on Dilatometry Curve

2.2.1 Maximum Precipitation Temperature

2.2.2 Number and Size of Precipitates and the Degree of the Change in Dilation Slope

2.3 Heat Treatment

2.3.1 Mechanical Properties

2.3.2 Microstructure

2.3.3 Prior Austenite Grain

2.3.4 Heat Treatment and Mechanical Properties

2.3.5 Summary

2.4 Laves Phase

2.4.1 Thermodynamic and Kinetic Calculations

2.4.2 Initial Microstructure

2.4.3 Effect of Co on Laves Phase

2.4.4 Summary

2.5 Nitride-Strengthened Heat-Resistant Steel

2.5.1 Microstructure and Nitride Precipitation

2.5.2 Mechanical Properties, Ductile-Brittle Transition Temperature and Fractography

2.6 Strengthening Mechanisms of Nitride-Strengthened Heat-Resistant Steel

2.6.1 Effect of Nitride Precipitation on Yield Strength

2.6.2 Dependence of DBTT on Tempering Temperature

References

3 Silicon-Bearing High-Chromium Heat-Resistant Steels

3.1 δ Ferrite

3.1.1 Microstructure

3.1.2 Effect of δ Ferrite on Matrix Structure

3.2 δ Ferrite and Mechanical Properties

3.2.1 Mechanical Properties

3.2.2 Effect of δ Ferrite on Strength and Toughness

3.2.3 Fracture Morphology

3.2.4 Delamination Fracture Caused by δ Ferrite

3.2.5 Elimination of δ Ferrite

3.2.6 Summary

3.3 Normalising Temperature

3.3.1 Dilatometry

3.3.2 Effects of Normalising Temperature on the Microstructure and Precipitation

3.3.3 Summary
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Normalising Temperature and Mechanical Properties</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Effects of Normalising Temperature on Tensile Properties</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Effects of Normalising Temperature on Impact Toughness</td>
<td>57</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Summary</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Impact Toughness Under Different Tempering Temperature</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Impact Toughness Under Different Cooling Mode After Tempering</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Carbide-Strengthened Reduced Activation Heat-Resistant Steels</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Developing History of 9–12Cr Steels</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Influence of Purification on Mechanical Properties</td>
<td>67</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Tensile Properties</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Impact Properties</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Influence of Purification on Microstructure</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of Yttrium on Mechanical Properties</td>
<td>70</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Alloy-Design Philosophy and Strengthening Mechanisms</td>
<td>70</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Microstructure and Mechanical Properties</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Yttrium-Rich Blocks in Steel and Their Effects on the Mechanical Properties of Steel</td>
<td>72</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Yttrium-Rich Blocks in Rolled Steel</td>
<td>73</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Yttrium-Rich Blocks in Heat-Treated Steel</td>
<td>73</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Effects of Yttrium-Rich Blocks on the Mechanical Properties of Steel</td>
<td>73</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Summary</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of Heat Treatment Processes on Microstructure and Mechanical Properties</td>
<td>75</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Developing History of RAFM Steels</td>
<td>75</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Microstructure by Metallography</td>
<td>76</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Microstructure by Transmission Electron Microscopy</td>
<td>77</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Mechanical Properties</td>
<td>79</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Summary</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Nitride-Strengthened Reduced Activation Heat-Resistant Steels</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Microstructure, Nitride Precipitation, Hardness and Effect of Tempering Temperature</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Impact Toughness, Its Dependence on Tempering, and Phase Transformation</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Tensile Properties and Effects of Chemical Composition and Tempering Temperature</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>Inclusions</td>
<td>98</td>
</tr>
<tr>
<td>5.5</td>
<td>Dependence of the Prior Austenite Grain Size on Normalising Temperature</td>
<td>101</td>
</tr>
<tr>
<td>5.6</td>
<td>Inclusion Initiating Cleavage Fracture</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>107</td>
</tr>
</tbody>
</table>
Part II Service and Production Behaviour

6 Thermal Ageing of Heat-Resistant Steels 113
 6.1 Microstructure .. 113
 6.1.1 Heat Treatment, Martensitic Lath and Subgrain Structure,
 M_{23}C_{6} .. 113
 6.1.2 Effect of Thermal Exposure 115
 6.2 Mechanical Properties of China Low Activation Martensitic
 (CLAM) Steel .. 117
 6.2.1 Strength .. 117
 6.2.2 Hardness .. 117
 6.2.3 Martensitic Lath Recovery and Its Effect on Strength 118
 6.2.4 Impact Toughness .. 119
 6.2.5 Effect of Growth and Coarsening of M_{23}C_{6}
 on DBTT During Ageing at 600 °C 119
 6.2.6 Summary on Microstructure and Mechanical Properties
 After Ageing at 600 °C 121
 6.3 Mechanical Properties of ASME-P92
 and Other Ferritic/Martensitic Steels 122
 6.3.1 Effect of Thermal Exposure 122
 6.3.2 Effect of Microstructure Evolution 123
 6.4 Laves Phase Precipitation Behaviour and Its Effects on Toughness 126
 6.5 Precipitates and Subgrain Boundaries 130
 6.6 Summary .. 131
 References .. 132

7 Microstructural Stability of Heat-Resistant Steels 135
 7.1 Martensitic Lath Widening and Disappearance
 of Prior Austenite Grain Boundary 135
 7.2 Emergence of Subgrain and Growth and Coarsening
 of Precipitates ... 138
 7.2.1 Formation of Subgrains 138
 7.2.2 Growth of Subgrains 139
 7.2.3 Interaction Between Precipitate and Subgrain 140
 7.2.4 Effect of Subgrain on Creep Failure 141
 7.2.5 M_{23}C_{6} Carbides 141
 7.2.6 MX Carbonitrides .. 142
 7.3 Laves Phase .. 143
 7.3.1 Characteristics of Laves Phase 143
 7.3.2 Nucleation .. 144
 7.3.3 Growth .. 145
 7.3.4 Effect of Laves Phase on Mechanical Properties 147
 7.3.5 Laves-Phase After Long-Term Creep Exposure 149
8 Creep of Heat-Resistant Steels ... 163
 8.1 Creep Mechanism and Methods of Predicting Creep
 Rupture Property .. 163
 8.1.1 Isotherms Extrapolation Method 165
 8.1.2 Time–Temperature Parameter Methods 165
 8.1.3 ϑ Concept Project Method 166
 8.1.4 CDM Model ... 166
 8.2 Analysis of Characteristics of Various Forecast Methods
 for the Creep Rupture Property 166
 8.2.1 Limitations of Isotherm Extrapolation 166
 8.2.2 The Use of Time–Temperature Parameter Method 167
 8.2.3 Simulation of Creep Curves 168
 8.2.4 Summary ... 169
 8.3 Constitutive Equations of the Minimum Creep Rate 169
 8.3.1 Stress Exponent in Power-Law-Breakdown Region
 for Steels with Different Cr Contents 169
 8.3.2 True Stress Exponent in Power-Law-Breakdown Region
 for 9 %Cr Heat-Resistant Steels 170
 8.3.3 Constitutive Equations in Power-Law-Breakdown Region.. 172
 8.3.4 Creep Mechanism Under Different Stresses
 for Grade 91 Steel at 600 °C 172
 8.3.5 Constitutive Equations from Power-Law-Breakdown
 Region to Power-Law Region 173
 8.3.6 Continuum Creep Damage Mechanics Modelling
 and Its Application ... 174
 8.4 Microstructure Evolution During High-Temperature Creep ... 175
 8.4.1 Microstructure Before Creep 175
 8.4.2 Creep Rupture Strength 175
 8.4.3 Effect of Microstructure Evolution
 on Creep Rupture Strength 177
 8.5 High-Temperature Creep Rupture of Lower Grade
 Heat-Resistant Steel ... 183
 8.5.1 Creep Rupture Properties 183
 8.5.2 Creep Fracture Surface 183
 8.5.3 Microstructure Evolution 185
8.6 Summary ... 186
References .. 187

9 Hot Deformation of Heat-Resistant Steels 191
9.1 Background .. 191
9.2 Determination of Recrystallisation and Bainite Phase
Transformation Temperatures 192
9.3 Stress–Strain Curves ... 194
9.4 Constitutive Equations ... 198
9.5 Microstructure Evolution 201
9.6 Critical Conditions for DRX and the Effects
of Zener-Hollomon Parameter 209
9.7 Instability and Processing Maps 211
9.8 Summary ... 214
References ... 214

Bibliography .. 217
9-12Cr Heat-Resistant Steels
Yan, W.; Wang, W.; Shan, Y.; Yang, K.; Sha, W.
2015, XIV, 218 p. 77 illus., 25 illus. in color., Hardcover
ISBN: 978-3-319-14838-0