Contents

Preface .. ix
Preliminaries .. xiii

1 The spaces H^s ... 1
1.1 Definition and simplest properties 1
1.2 Embedding theorems ... 3
1.3 The spaces $H^s(\mathbb{R}^n)$ of negative order 7
1.4 Isometric isomorphisms Λ_t 8
1.5 Dense subsets .. 8
1.6 Continuous linear functionals on $H^s(\mathbb{R}^n)$ 9
1.7 Norms of positive fractional order 11
1.8 Estimates of intermediate norms 13
1.9 Multipliers .. 13
1.10 Traces on hyperplanes 16
1.11 Mollifications and shifts 18
1.12 A compactness theorem 19
1.13 Changes of coordinates 20
1.14 Discrete norms and discrete representation of functions
in $H^s(\mathbb{R}^n)$.. 21
1.15 Embedding of the spaces $H^s(\mathbb{R}^n)$ in $L_p(\mathbb{R}^n)$ 23
2 The spaces $H^s(M)$ on a closed smooth manifold M 24
2.1 Closed smooth manifolds 24
2.2 The spaces $H^s(M)$ 27
2.3 Basic properties of the spaces $H^s(M)$ 29
2.4 Manifolds of finite smoothness 32
3 The spaces $H^s(\mathbb{R}^n_+)$ 32
3.1 Definitions .. 32
3.2 Properties of the spaces $H^s(\mathbb{R}^n_+)$ 36
3.3 Boundary values ... 38
3.4 Extension by zero ... 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Gluing together functions in $H^s(\mathbb{R}^n)$ and $H^s(\mathbb{R}^n)$</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Decomposition of the space $H^s(\mathbb{R}^n)$ with $</td>
<td>s</td>
</tr>
<tr>
<td>4</td>
<td>The spaces $H^s(\mathbb{R}^n_+)$ and $\tilde{H}^s(\mathbb{R}^n_+)$</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>The spaces $\tilde{H}^s(\mathbb{R}^n_+)$</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Duality between the spaces $H^s(\mathbb{R}^n_+)$ and $\tilde{H}^{-s}(\mathbb{R}^n_+)$</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>The spaces $\tilde{H}^s(\mathbb{R}^n_+)$</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>The spaces $\tilde{H}^{-s}(\mathbb{R}^n_+)$ and $H^{-s}(\mathbb{R}^n_+)$ with non-half-integer $s > 1/2$</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>The spaces H^s on smooth bounded domains and manifolds with boundary</td>
<td>57</td>
</tr>
<tr>
<td>5.1</td>
<td>The spaces $H^s(\Omega)$</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>The spaces $H^s(M)$</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>Elliptic equations and elliptic boundary value problems</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Elliptic equations on a closed smooth manifold</td>
<td>66</td>
</tr>
<tr>
<td>6.1</td>
<td>Definitions</td>
<td>66</td>
</tr>
<tr>
<td>6.2</td>
<td>Main theorems</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>Adjoint operators</td>
<td>72</td>
</tr>
<tr>
<td>6.4</td>
<td>Some spectral properties of elliptic operators</td>
<td>74</td>
</tr>
<tr>
<td>6.5</td>
<td>Generalizations</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Elliptic boundary value problems in smooth bounded domains</td>
<td>77</td>
</tr>
<tr>
<td>7.1</td>
<td>Definitions and statements of main theorems</td>
<td>77</td>
</tr>
<tr>
<td>7.2</td>
<td>Proofs of main theorems</td>
<td>82</td>
</tr>
<tr>
<td>7.3</td>
<td>Normal systems of boundary operators and formally adjoint boundary value problems. Boundary value problems with homogeneous boundary conditions</td>
<td>88</td>
</tr>
<tr>
<td>7.4</td>
<td>Spectral boundary value problems</td>
<td>92</td>
</tr>
<tr>
<td>7.5</td>
<td>Generalizations</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>Strongly elliptic equations and variational problems</td>
<td>96</td>
</tr>
<tr>
<td>8.1</td>
<td>The Dirichlet and Neumann problems for a second-order scalar equation</td>
<td>97</td>
</tr>
<tr>
<td>8.2</td>
<td>Generalizations</td>
<td>107</td>
</tr>
<tr>
<td>3</td>
<td>The spaces H^s and second-order strongly elliptic systems in Lipschitz domains</td>
<td>111</td>
</tr>
<tr>
<td>9</td>
<td>Lipschitz domains and Lipschitz surfaces</td>
<td>111</td>
</tr>
<tr>
<td>9.1</td>
<td>Specifics of Lipschitz domains and surfaces</td>
<td>111</td>
</tr>
<tr>
<td>9.2</td>
<td>The spaces H^s on Lipschitz domains and Lipschitz surfaces</td>
<td>118</td>
</tr>
<tr>
<td>9.3</td>
<td>Integration by parts</td>
<td>121</td>
</tr>
<tr>
<td>10</td>
<td>Discrete Norms, Discrete Representation of Functions, and a Universal Extension Operator</td>
<td>124</td>
</tr>
<tr>
<td>10.1</td>
<td>Discrete norms on $H^s(\mathbb{R}^n_+)$</td>
<td>124</td>
</tr>
<tr>
<td>10.2</td>
<td>Discrete representation of functions on \mathbb{R}^n</td>
<td>127</td>
</tr>
</tbody>
</table>
10.3 Discrete representation of functions and norms on a special Lipschitz domain .. 128
10.4 The extension operator .. 132
10.5 Construction of φ_0 with $N = \infty$ 134

11 Boundary value problems in Lipschitz domains for second-order strongly elliptic systems 136
11.1 Basic definitions and results 136
11.2 The Weyl decomposition of the space $H^1(\Omega)$ and the choice of f and h .. 147
11.3 The Poincaré–Steklov operators 152
11.4 The mixed problem ... 153
11.5 Duality relations on Γ 155
11.6 Spectral problems .. 156
11.7 Examples .. 161
11.8 Other problems .. 164
11.9 Two classical operator approaches to variational problems ... 165

12 Potential operators and transmission problems 170
12.1 A system on the torus ... 170
12.2 Definition of single- and double-layer potentials 174
12.3 Solution representation and its consequences. The transmission problem ... 177
12.4 Operators on Γ and the Calderón projections 179
12.5 Strong coercivity of forms and invertibility of the operators A and H ... 181
12.6 Relations between operators on the boundary 184
12.7 Duality relations on Γ ... 184
12.8 Problems with boundary conditions on a nonclosed surface ... 185
12.9 Problems with a spectral parameter in transmission conditions ... 190
12.10 More general transmission problems 191

4 More general spaces and their applications 193
13 Elements of interpolation theory 193
13.1 Contents of the section. The spaces L_p 193
13.2 Basic definitions and the complex interpolation method 195
13.3 The real method ... 205
13.4 Retractions and coretractions 208
13.5 Duality ... 210
13.6 Iterated interpolation .. 211
13.7 Interpolation and extrapolation of invertibility 212
13.8 Further results .. 217
13.9 Positive operators and their fractional powers 220

14 The spaces W^s_p, H^s_p, and B^s_p 222
14.1 Spaces of functions on \mathbb{R}^n 222
14.2 Spaces on smooth manifolds 227
14.3 Function spaces on \mathbb{R}_+^n and on smooth domains227
14.4 Remarks to embedding theorems229
14.5 The spaces H^s_p and B^s_p on Lipschitz domains and Lipschitz surfaces ..230
14.6 Spaces with $p = 1$ and $p = \infty$232
14.7 The Triebel–Lizorkin spaces and the general Besov spaces .232

15 Applications to the general theory of elliptic equations and
boundary value problems ..234
15.1 General elliptic problems in the Sobolev–Slobodetskii spaces234
15.2 Generalizations ..236

16 Applications to boundary value problems in Lipschitz domains. 1236
16.1 Main boundary value problems in more general H^s spaces . .236
16.2 The operators A and H in more general H^s spaces240
16.3 The Rellich identity and its consequences241
16.4 Savaré’s generalized theorem243
16.5 Nirenberg’s method and the regularity of solutions inside a
domain ...250
16.6 Fractional powers of the operators corresponding to
problems in Lipschitz domains and the Kato problem252

17 Applications to boundary value problems in Lipschitz domains. 2257
17.1 Further generalizations of the settings of the Dirichlet and
Neumann problems ...257
17.2 New corollaries of Shneiberg’s theorem260
17.3 Examples ..266
17.4 The optimal resolvent estimate267
17.5 Elementary facts about semigroups273
17.6 Parabolic problems in a Lipschitz cylinder275

18 Appendix: Definitions and facts from operator theory276
18.1 Fredholm operators ...276
18.2 The Lax–Milgram theorem283
18.3 A few definitions and facts from spectral theory287
18.4 Pseudodifferential operators291

19 Additional remarks and literature comments296
19.1 To Chapter 1 ...296
19.2 To Chapter 2 ...297
19.3 To Chapter 3 ...301
19.4 To Chapter 4 ...304
19.5 To Section 18 ...310

References ..313
Index ...329
Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains
Agranovich, M.S.
2015, XIII, 331 p., Hardcover
ISBN: 978-3-319-14647-8