Contents

1 Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO, SiO$_2$, ZrO$_2$) and Reducible (TiO$_2$, NiO, WO$_3$) Oxides 1
Gianfranco Pacchioni
1.1 Introduction: The Role of Defects in Oxide Materials 1
1.2 Treating Defects in Solids: Periodic Models and Local Modes .. 4
1.2.1 Periodic Models 4
1.2.2 Local Cluster Models 5
1.2.3 Embedding Schemes 6
1.3 Problems of DFT in Describing Defects in Insulators: Some Instructive Examples 8
1.4 The Oxygen Vacancy in Insulating and Semiconducting Oxides ... 10
1.4.1 Non-reducible Oxides: SiO$_2$, MgO, ZrO$_2$ 11
1.4.2 Reducible Oxides: TiO$_2$, NiO and WO$_3$ 16
1.5 Conclusions .. 22
References .. 24

2 Atomic Scale Characterization of Defects on Oxide Surfaces .. 29
Niklas Nilius, Martin Sterrer, Markus Heyde and Hans-Joachim Freund
2.1 Introduction ... 29
2.2 Point Defects .. 30
2.2.1 Non-reducible Oxides: MgO 30
2.2.2 Reducible Oxides 48
2.3 Line Defects ... 58
2.3.1 Dislocation Network in Alumina Thin Films 58
2.3.2 Line Defects in MgO Thin Films 63
2.3.3 Electron Trapping in MgO Line Defects 66
Noncontact AFM Imaging of Atomic Defects on the Rutile TiO$_2$(110) Surface

Jeppe V. Lauritsen

8.1 Introduction

8.1.1 Introduction

8.1.2 Noncontact Atomic Force Microscopy

8.1.3 Principle of Noncontact Atomic Force Microscopy

8.1.4 Contrast Formation in Noncontact AFM Images

8.1.5 Noncontact AFM Image Simulations

8.3 Defects on Rutile TiO$_2$(110) Studied with Noncontact AFM

8.3.1 The Rutile TiO$_2$(110) Surface and Its Surface Defects

8.3.2 Noncontact AFM Contrast on the Rutile TiO$_2$(110) Surface

8.3.3 Tip Influence on the nc-AFM Contrast on the Rutile TiO$_2$(110) Surface

8.3.4 Force Spectroscopy on the Rutile TiO$_2$(110) Surface

8.3.5 Water Splitting Products, H Diffusion and Subsurface H on the TiO$_2$(110) Surface

8.3.6 Summary and Perspectives

References

Defects in Metal Oxide Nanoparticle Powders

Thomas Berger and Oliver Diwald

9.1 Introduction

9.1.1 Particle Systems and the Hierarchy of Defects

9.1.2 Stoichiometry, Levels of Oxygen Deficiency and n-Type Doping

9.2 Experimental Probes for Defects in Nanoparticle Ensembles

9.2.2 Point Defects and Experimental Fingerprints

References
9.3 The Quest for Morphologically Defined Particle Systems
 9.3.1 Science of Synthesis
 9.3.2 MgO Powders as Model System for Highly Dispersed Solids
 9.3.3 Particle Interfaces and the Microstructure of Powders
 9.3.4 Powders of Facetted TiO₂ Particles
9.4 Summary and Outlook
References

10 Point Defects in Electron Paramagnetic Resonance
 Elio Giamello, Mario Chiesa and Maria Cristina Paganini
 10.1 Introduction
 10.2 The EPR Techniques: A Summary
 10.2.1 The Spin-Hamiltonian Formalism
 10.2.2 Single Crystal Systems
 10.2.3 Polycrystalline Systems
 10.3 Colour Centres in the Bulk of Ionic Solids
 10.4 Localized Holes and V Centers in Ionic Solids
 10.5 Surface Defects as Electron Traps: A Paradigm Shift
 10.6 Surface Trapping Sites for Charge Carriers
 10.6.1 Insulating Ionic Oxides
 10.6.2 Semiconducting Oxides
 10.7 Conclusions
References

11 Defects on Strontium Titanate
 Matthew S.J. Marshall, Andres E. Becerra-Toledo, Laurence D. Marks and Martin R. Castell
 11.1 Introduction
 11.2 Defects in Bulk SrTiO₃
 11.2.1 Point Defects
 11.2.2 Vacancy Clusters
 11.2.3 Ruddlesden-Popper Phases
 11.2.4 Dislocations and Defects
 11.2.5 Defects Introduced by Ar-Bombardment
 11.3 Surfaces of SrTiO₃
 11.3.1 Surface Structure of SrTiO₃(001)
 11.3.2 Polyhedral Quartet Structural Motif
 11.3.3 Nanostructured SrTiO₃
 11.4 Surface Defects
 11.4.1 Defects at the Surface of SrTiO₃
 11.4.2 Surface Vacancy Clusters
12 Dopant and Defect Induced Electronic States at In$_2$O$_3$ Surfaces

Russell G. Egdell

12.1 Introduction 351
12.2 The Structure of In$_2$O$_3$ and Its Surfaces 352
12.2.1 Bulk Structure of In$_2$O$_3$ 352
12.2.2 Energetics of Surfaces and Surface Structures 354
12.3 Bulk Electronic Structure 358
12.3.1 Basic Features of Electronic Structure 358
12.3.2 The Bulk Bandgap 358
12.3.3 The Charge Neutrality Level in In$_2$O$_3$ 363
12.4 Defects and Doping 365
12.4.1 Bulk Defect States 365
12.4.2 Defects at Surfaces 365
12.4.3 Bulk N-Type Doing: Chemical Aspects 367
12.4.4 Bulk N-Type Doping: The Effective Mass and the Onset of Degeneracy in Doped In$_2$O$_3$ 368
12.4.5 Doping and Plasmons 371
12.5 Materials Preparation 374
12.6 Photoemission Studies of In$_2$O$_3$ and Sn-Doped In$_2$O$_3$ 377
12.6.1 Nominally Undoped In$_2$O$_3$: Band Bending and Carrier Accumulation 377
12.6.2 Electronic States in the Bulk Bandgap 382
12.6.3 Dopant Induced Electronic States: Conduction Band Photoemission 384
12.6.4 Satellite Structure in Core Level Photoemission of Doped Samples 386
12.7 Summary and Outlook 388
References .. 390

13 Resistive Switching in Oxides 401
A. Mehonic and A.J. Kenyon

13.1 Introduction 401
13.2 Classes of Resistive Switching 403
13.3 Phenomenology of Filamentary Resistive Switching 405
Contents

13.3.1 Electroforming 407
13.3.2 Extrinsic Filamentary Resistive Switching 408
13.3.3 Intrinsic Filamentary Resistive Switching 409
13.4 Memristive Systems and Memristor Model 412
13.5 Quantisation of Conductance 415
13.6 Technological Considerations 419
 13.6.1 Switching Endurance 421
 13.6.2 Uniformity of Switching Voltages and Currents 422
 13.6.3 Data Retention 423
 13.6.4 The Need for Selection Elements 423
References ... 424

14 Photon-, Electron-, and Scanning Tunneling Microscopy-Induced Defects on Oxide Surfaces 429
Chi Lun Pang and Geoff Thornton
14.1 Introduction 429
14.2 Photon-Induced Defects 430
14.3 Electron-Induced Defects 436
14.4 Scanning Tunneling Microscopy-Induced Defects 441
14.5 Future Outlook 446
References ... 447

Index .. 453
Defects at Oxide Surfaces
Jupille, J.; Thornton, G. (Eds.)
2015, XVI, 462 p. 202 illus., 95 illus. in color., Hardcover
ISBN: 978-3-319-14366-8