Contents

1 Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO, SiO₂, ZrO₂) and Reducible (TiO₂, NiO, WO₃) Oxides

Gianfranco Pacchioni

1.1 Introduction: The Role of Defects in Oxide Materials 1
1.2 Treating Defects in Solids: Periodic Models and Local Modes .. 4
 1.2.1 Periodic Models ... 4
 1.2.2 Local Cluster Models 5
 1.2.3 Embedding Schemes 6
1.3 Problems of DFT in Describing Defects in Insulators: Some Instructive Examples 8
1.4 The Oxygen Vacancy in Insulating and Semiconducting Oxides .. 10
 1.4.1 Non-reducible Oxides: SiO₂, MgO, ZrO₂ 11
 1.4.2 Reducible Oxides: TiO₂, NiO and WO₃ 16
1.5 Conclusions .. 22
References ... 24

2 Atomic Scale Characterization of Defects on Oxide Surfaces

Niklas Nilius, Martin Sterrer, Markus Heyde and Hans-Joachim Freund

2.1 Introduction .. 29
2.2 Point Defects .. 30
 2.2.1 Non-reducible Oxides: MgO 30
 2.2.2 Reducible Oxides .. 48
2.3 Line Defects .. 58
 2.3.1 Dislocation Network in Alumina Thin Films 58
 2.3.2 Line Defects in MgO Thin Films 63
 2.3.3 Electron Trapping in MgO Line Defects 66
3 Defects on TiO$_2$—Key Pathways to Important Surface Processes

Zhen Zhang and John T. Yates Jr.

3.1 Overview of Defects in Solids

3.1.1 0D Defects (Point Defects)

3.1.2 1D Defects (Line Defects)

3.1.3 2D Defects (Interfacial Defects)

3.1.4 3D Defects (Bulk Defects)

3.1.5 Defects on Surfaces

3.2 Crystal Forms of TiO$_2$

3.3 Oxygen Point Defects

3.3.1 Oxygen Vacancy

3.3.2 Chemisorbed O$_t$ Defect

3.4 Ti Point Defects

3.5 H Point Defects on TiO$_2$

3.5.1 OH/TiO$_2$

3.5.2 Atomic H/TiO$_2$

3.6 Doping of TiO$_2$

3.7 Summary

References

4 Excess Electrons at Oxide Surfaces

Sylvie Bourgeois, Bruno Domenichini and Jacques Jupille

4.1 Introduction

4.2 Rutile TiO$_2$(110) Surface

4.2.1 Point Defects Versus Excess Charges

4.2.2 Spectroscopic Fingerprint of Excess Charges

4.2.3 Location of Excess Electrons

4.2.4 Excess Charges Located Independently of Their Origin

4.3 Adsorbates on Rutile (110)

4.3.1 Molecular and Dissociative Adsorption of Oxygen

4.3.2 Hydroxylated Sites

4.4 Anatase

4.4.1 Reduced Anatase

4.4.2 Defective Anatase (101) Surface

4.4.3 Negatively Charged Oxygen on Reduced Anatase (101)

4.5 Conclusion

References
5 Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia

Maria Verónica Ganduglia-Pirovano

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>5.2</td>
<td>Models and Computational Methods</td>
<td>151</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Point Defect Modeling</td>
<td>151</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Electronic Structure Methods</td>
<td>152</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Defect Formation Energy and Statistical Thermodynamics</td>
<td>155</td>
</tr>
<tr>
<td>5.3</td>
<td>Cerium Oxide</td>
<td>156</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Experimental Findings on Oxygen Defects</td>
<td>157</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Structure Relaxation and Electronic Structure</td>
<td>158</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Defect Stability</td>
<td>163</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Summary of Cerium Oxide</td>
<td>169</td>
</tr>
<tr>
<td>5.4</td>
<td>Vanadium Oxide</td>
<td>170</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Experimental Findings on Oxygen Defects</td>
<td>171</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Structure Relaxation and Electronic Structure</td>
<td>172</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Defect Stability</td>
<td>176</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Summary Vanadium Oxide</td>
<td>180</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary and Outlook</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>183</td>
</tr>
</tbody>
</table>

6 The Structure and Properties of Clean Steps at Oxide Surfaces

Matthew J. Wolf and Alexander L. Shluger

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>6.2</td>
<td>The Atomic Structure of Steps</td>
<td>193</td>
</tr>
<tr>
<td>6.3</td>
<td>Understanding and Predicting Step Stabilities</td>
<td>199</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Calculation of the Step Stability</td>
<td>199</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Surface Morphologies from Step Formation Energies</td>
<td>202</td>
</tr>
<tr>
<td>6.4</td>
<td>The Electronic Structure of Steps</td>
<td>205</td>
</tr>
<tr>
<td>6.5</td>
<td>Point Defects at Steps</td>
<td>208</td>
</tr>
<tr>
<td>6.6</td>
<td>Outlook</td>
<td>210</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>211</td>
</tr>
</tbody>
</table>

7 Defects on Bulk MgO(001) Imaged by nc-AFM

Clemens Barth

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>7.2</td>
<td>Electrostatic AFMs</td>
<td>215</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Principles of EFM and KPFM</td>
<td>216</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Charged Defects in EFM and KPFM</td>
<td>219</td>
</tr>
</tbody>
</table>
8 Noncontact AFM Imaging of Atomic Defects on the Rutile TiO₂(110) Surface

Jeppe V. Lauritsen

8.1 Introduction .. 241
8.2 Noncontact Atomic Force Microscopy 242
 8.2.1 Principle of Noncontact Atomic Force Microscopy 243
 8.2.2 Contrast Formation in Noncontact AFM Images 244
 8.2.3 Noncontact AFM Image Simulations 247
8.3 Defects on Rutile TiO₂(110) Studied with Noncontact AFM .. 249
 8.3.1 The Rutile TiO₂(110) Surface and Its Surface Defects 250
 8.3.2 Noncontact AFM Contrast on the Rutile TiO₂(110) Surface .. 253
 8.3.3 Tip Influence on the nc-AFM Contrast on the Rutile TiO₂(110) Surface 257
 8.3.4 Force Spectroscopy on the Rutile TiO₂(110) Surface 259
 8.3.5 Water Splitting Products, H Diffusion and Subsurface H on the TiO₂(110) Surface 262
 8.3.6 Summary and Perspectives 265
References .. 266

9 Defects in Metal Oxide Nanoparticle Powders 273

Thomas Berger and Oliver Diwald

9.1 Introduction .. 273
 9.1.1 Particle Systems and the Hierarchy of Defects 273
 9.1.2 Stoichiometry, Levels of Oxygen Deficiency and n-Type Doping 278
9.2 Experimental Probes for Defects in Nanoparticle Ensembles .. 280
 9.2.2 Point Defects and Experimental Fingerprints 280
9.3 The Quest for Morphologically Defined Particle Systems
9.3.1 Science of Synthesis
9.3.2 MgO Powders as Model System for Highly Dispersed Solids
9.3.3 Particle Interfaces and the Microstructure of Powders
9.3.4 Powders of Facetted TiO₂ Particles
9.4 Summary and Outlook
References

10 Point Defects in Electron Paramagnetic Resonance
Elio Giamello, Mario Chiesa and Maria Cristina Paganini
10.1 Introduction
10.2 The EPR Techniques: A Summary
10.2.1 The Spin-Hamiltonian Formalism
10.2.2 Single Crystal Systems
10.2.3 Polycrystalline Systems
10.3 Colour Centres in the Bulk of Ionic Solids
10.4 Localized Holes and V Centers in Ionic Solids
10.5 Surface Defects as Electron Traps: A Paradigm Shift
10.6 Surface Trapping Sites for Charge Carriers
10.6.1 Insulating Ionic Oxides
10.6.2 Semiconducting Oxides
10.7 Conclusions
References

11 Defects on Strontium Titanate
Matthew S.J. Marshall, Andres E. Becerra-Toledo, Laurence D. Marks and Martin R. Castell
11.1 Introduction
11.2 Defects in Bulk SrTiO₃
11.2.1 Point Defects
11.2.2 Vacancy Clusters
11.2.3 Ruddlesden-Popper Phases
11.2.4 Dislocations and Defects
11.2.5 Defects Introduced by Ar-Bombardment
11.3 Surfaces of SrTiO₃
11.3.1 Surface Structure of SrTiO₃(001)
11.3.2 Polyhedral Quartet Structural Motif
11.3.3 Nanostructured SrTiO₃
11.4 Surface Defects
11.4.1 Defects at the Surface of SrTiO₃
11.4.2 Surface Vacancy Clusters
11.4.3 Polyhedral Quartet Defects 340
11.4.4 Triline Defects ... 341
11.5 Defect Diffusion ... 342
 11.5.1 Point Defect Diffusion 342
 11.5.2 Diffusion of Defect Clusters 342
11.6 Conclusions .. 346
References .. 346

12 Dopant and Defect Induced Electronic States at In$_2$O$_3$ Surfaces .. 351
Russell G. Egdell
 12.1 Introduction .. 351
 12.2 The Structure of In$_2$O$_3$ and Its Surfaces 352
 12.2.1 Bulk Structure of In$_2$O$_3$ 352
 12.2.2 Energetics of Surfaces and Surface Structures 354
 12.3 Bulk Electronic Structure 358
 12.3.1 Basic Features of Electronic Structure 358
 12.3.2 The Bulk Bandgap 358
 12.3.3 The Charge Neutrality Level in In$_2$O$_3$ 363
 12.4 Defects and Doping .. 365
 12.4.1 Bulk Defect States 365
 12.4.2 Defects at Surfaces 365
 12.4.3 Bulk N-Type Doing: Chemical Aspects 367
 12.4.4 Bulk N-Type Doping: The Effective Mass and the Onset of Degeneracy in Doped In$_2$O$_3$ 368
 12.4.5 Doping and Plasmons 371
 12.5 Materials Preparation 374
 12.6 Photoemission Studies of In$_2$O$_3$ and Sn-Doped In$_2$O$_3$ 377
 12.6.1 Nominally Undoped In$_2$O$_3$: Band Bending and Carrier Accumulation 377
 12.6.2 Electronic States in the Bulk Bandgap 382
 12.6.3 Dopant Induced Electronic States: Conduction Band Photoemission 384
 12.6.4 Satellite Structure in Core Level Photoemission of Doped Samples 386
 12.7 Summary and Outlook 388
References .. 390

13 Resistive Switching in Oxides 401
A. Mehonic and A.J. Kenyon
 13.1 Introduction .. 401
 13.2 Classes of Resistive Switching 403
 13.3 Phenomenology of Filamentary Resistive Switching 405
13.3.1 Electroforming ... 407
13.3.2 Extrinsic Filamentary Resistive Switching 408
13.3.3 Intrinsic Filamentary Resistive Switching 409
13.4 Memristive Systems and Memristor Model 412
13.5 Quantisation of Conductance 415
13.6 Technological Considerations 419
13.6.1 Switching Endurance 421
13.6.2 Uniformity of Switching Voltages and Currents ... 422
13.6.3 Data Retention .. 423
13.6.4 The Need for Selection Elements 423
References ... 424

14 Photon-, Electron-, and Scanning Tunneling
Microscopy-Induced Defects on Oxide Surfaces 429
Chi Lun Pang and Geoff Thornton
14.1 Introduction ... 429
14.2 Photon-Induced Defects 430
14.3 Electron-Induced Defects 436
14.4 Scanning Tunneling Microscopy-Induced Defects 441
14.5 Future Outlook .. 446
References ... 447

Index .. 453
Defects at Oxide Surfaces
Jupille, J.; Thornton, G. (Eds.)
2015, XVI, 462 p. 202 illus., 95 illus. in color., Hardcover
ISBN: 978-3-319-14366-8