Contents

1 Numerical Simulations of Defective Structures: The Nature of Oxygen Vacancy in Non-reducible (MgO, SiO₂, ZrO₂) and Reducible (TiO₂, NiO, WO₃) Oxides 1
 Gianfranco Pacchioni
 1.1 Introduction: The Role of Defects in Oxide Materials 1
 1.2 Treating Defects in Solids: Periodic Models and Local Modes .. 4
 1.2.1 Periodic Models ... 4
 1.2.2 Local Cluster Models 5
 1.2.3 Embedding Schemes ... 6
 1.3 Problems of DFT in Describing Defects in Insulators: Some Instructive Examples 8
 1.4 The Oxygen Vacancy in Insulating and Semiconducting Oxides ... 10
 1.4.1 Non-reducible Oxides: SiO₂, MgO, ZrO₂ 11
 1.4.2 Reducible Oxides: TiO₂, NiO and WO₃ 16
 1.5 Conclusions .. 22
 References .. 24

2 Atomic Scale Characterization of Defects on Oxide Surfaces ... 29
 Niklas Nilius, Martin Sterrer, Markus Heyde and Hans-Joachim Freund
 2.1 Introduction ... 29
 2.2 Point Defects .. 30
 2.2.1 Non-reducible Oxides: MgO 30
 2.2.2 Reducible Oxides ... 48
 2.3 Line Defects .. 58
 2.3.1 Dislocation Network in Alumina Thin Films 58
 2.3.2 Line Defects in MgO Thin Films 63
 2.3.3 Electron Trapping in MgO Line Defects 66
3 Defects on TiO$_2$—Key Pathways to Important Surface Processes

Zhen Zhang and John T. Yates Jr.

3.1 Overview of Defects in Solids

3.1.1 0D Defects (Point Defects)

3.1.2 1D Defects (Line Defects)

3.1.3 2D Defects (Interfacial Defects)

3.1.4 3D Defects (Bulk Defects)

3.1.5 Defects on Surfaces

3.2 Crystal Forms of TiO$_2$

3.3 Oxygen Point Defects

3.3.1 Oxygen Vacancy

3.3.2 Chemisorbed O$_2$ Defect

3.4 Ti Point Defects

3.5 H Point Defects on TiO$_2$

3.5.1 OH/TiO$_2$

3.5.2 Atomic H/TiO$_2$

3.6 Doping of TiO$_2$

3.7 Summary

References

4 Excess Electrons at Oxide Surfaces

Sylvie Bourgeois, Bruno Domenichini and Jacques Jupille

4.1 Introduction

4.2 Rutile TiO$_2$(110) Surface

4.2.1 Point Defects Versus Excess Charges

4.2.2 Spectroscopic Fingerprint of Excess Charges

4.2.3 Location of Excess Electrons

4.2.4 Excess Charges Located Independently of Their Origin

4.3 Adsorbates on Rutile (110)

4.3.1 Molecular and Dissociative Adsorption of Oxygen

4.3.2 Hydroxylated Sites

4.4 Anatase

4.4.1 Reduced Anatase

4.4.2 Defective Anatase (101) Surface

4.4.3 Negatively Charged Oxygen on Reduced Anatase (101)

4.5 Conclusion

References
5 Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia ... 149
 Maria Verónica Ganduglia-Pirovano
 5.1 Introduction ... 149
 5.2 Models and Computational Methods 151
 5.2.1 Point Defect Modeling 151
 5.2.2 Electronic Structure Methods 152
 5.2.3 Defect Formation Energy and Statistical Thermodynamics 155
 5.3 Cerium Oxide ... 156
 5.3.1 Experimental Findings on Oxygen Defects 157
 5.3.2 Structure Relaxation and Electronic Structure 158
 5.3.3 Defect Stability 163
 5.3.4 Summary of Cerium Oxide 169
 5.4 Vanadium Oxide ... 170
 5.4.1 Experimental Findings on Oxygen Defects 171
 5.4.2 Structure Relaxation and Electronic Structure 172
 5.4.3 Defect Stability 176
 5.4.4 Summary Vanadium Oxide 180
 5.5 Summary and Outlook 181
 References .. 183

6 The Structure and Properties of Clean Steps at Oxide Surfaces ... 191
 Matthew J. Wolf and Alexander L. Shluger
 6.1 Introduction ... 191
 6.2 The Atomic Structure of Steps 193
 6.3 Understanding and Predicting Step Stabilities 199
 6.3.1 Calculation of the Step Stability 199
 6.3.2 Surface Morphologies from Step Formation Energies 202
 6.4 The Electronic Structure of Steps 205
 6.5 Point Defects at Steps 208
 6.6 Outlook .. 210
 References .. 211

7 Defects on Bulk MgO(001) Imaged by nc-AFM 215
 Clemens Barth
 7.1 Introduction ... 215
 7.2 Electrostatic AFMs .. 215
 7.2.1 Principles of EFM and KPFM 216
 7.2.2 Charged Defects in EFM and KPFM 219
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Magnesium Oxide Surfaces</td>
<td>220</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Bulk MgO(001) Surfaces</td>
<td>221</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Summary and Perspectives</td>
<td>232</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>8</td>
<td>Noncontact AFM Imaging of Atomic Defects on the Rutile TiO$_2$(110) Surface</td>
<td>241</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>241</td>
</tr>
<tr>
<td>8.2</td>
<td>Noncontact Atomic Force Microscopy</td>
<td>242</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Principle of Noncontact Atomic Force Microscopy</td>
<td>243</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Contrast Formation in Noncontact AFM Images</td>
<td>244</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Noncontact AFM Image Simulations</td>
<td>247</td>
</tr>
<tr>
<td>8.3</td>
<td>Defects on Rutile TiO$_2$(110) Studied with Noncontact AFM</td>
<td>249</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Rutile TiO$_2$(110) Surface and Its Surface Defects</td>
<td>250</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Noncontact AFM Contrast on the Rutile TiO$_2$(110) Surface</td>
<td>253</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Tip Influence on the nc-AFM Contrast on the Rutile TiO$_2$(110) Surface</td>
<td>257</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Force Spectroscopy on the Rutile TiO$_2$(110) Surface</td>
<td>259</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Water Splitting Products, H Diffusion and Subsurface H on the TiO$_2$(110) Surface</td>
<td>262</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Summary and Perspectives</td>
<td>265</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>9</td>
<td>Defects in Metal Oxide Nanoparticle Powders</td>
<td>273</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Particle Systems and the Hierarchy of Defects</td>
<td>273</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Stoichiometry, Levels of Oxygen Deficiency and n-Type Doping</td>
<td>278</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental Probes for Defects in Nanoparticle Ensembles</td>
<td>280</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Point Defects and Experimental Fingerprints</td>
<td>280</td>
</tr>
</tbody>
</table>
9.3 The Quest for Morphologically Defined Particle Systems 285
 9.3.1 Science of Synthesis 285
 9.3.2 MgO Powders as Model System for Highly Dispersed Solids 285
 9.3.3 Particle Interfaces and the Microstructure of Powders 287
 9.3.4 Powders of Facetted TiO₂ Particles 288

9.4 Summary and Outlook 292

References 293

10 Point Defects in Electron Paramagnetic Resonance 303
 Elio Giamello, Mario Chiesa and Maria Cristina Paganini
 10.1 Introduction 303
 10.2 The EPR Techniques: A Summary 304
 10.2.1 The Spin-Hamiltonian Formalism 304
 10.2.2 Single Crystal Systems 306
 10.2.3 Polycrystalline Systems 307
 10.3 Colour Centres in the Bulk of Ionic Solids 308
 10.4 Localized Holes and V Centres in Ionic Solids 311
 10.5 Surface Defects as Electron Traps: A Paradigm Shift 312
 10.6 Surface Trapping Sites for Charge Carriers 318
 10.6.1 Insulating Ionic Oxides 319
 10.6.2 Semiconducting Oxides 323
 10.7 Conclusions 324

References 324

11 Defects on Strontium Titanate 327
 Matthew S.J. Marshall, Andres E. Becerra-Toledo, Laurence D. Marks and Martin R. Castell
 11.1 Introduction 327
 11.2 Defects in Bulk SrTiO₃ 328
 11.2.1 Point Defects 328
 11.2.2 Vacancy Clusters 329
 11.2.3 Ruddlesden-Popper Phases 330
 11.2.4 Dislocations and Defects 331
 11.2.5 Defects Introduced by Ar-Bombardment 331
 11.3 Surfaces of SrTiO₃ 333
 11.3.1 Surface Structure of SrTiO₃(001) 333
 11.3.2 Polyhedral Quartet Structural Motif 334
 11.3.3 Nanostructured SrTiO₃ 334
 11.4 Surface Defects 339
 11.4.1 Defects at the Surface of SrTiO₃ 339
 11.4.2 Surface Vacancy Clusters 339
12 Dopant and Defect Induced Electronic States at In$_2$O$_3$ Surfaces

Russell G. Egdell

12.1 Introduction ... 351
12.2 The Structure of In$_2$O$_3$ and Its Surfaces 352
12.2.1 Bulk Structure of In$_2$O$_3$ 352
12.2.2 Energetics of Surfaces and Surface Structures 354
12.3 Bulk Electronic Structure 358
12.3.1 Basic Features of Electronic Structure 358
12.3.2 The Bulk Bandgap 358
12.3.3 The Charge Neutrality Level in In$_2$O$_3$ 363
12.4 Defects and Doping 365
12.4.1 Bulk Defect States 365
12.4.2 Defects at Surfaces 365
12.4.3 Bulk N-Type Doping: Chemical Aspects 367
12.4.4 Bulk N-Type Doping: The Effective Mass and the Onset of Degeneracy in Doped In$_2$O$_3$ 368
12.4.5 Doping and Plasmons 371
12.5 Materials Preparation 374
12.6 Photoemission Studies of In$_2$O$_3$ and Sn-Doped In$_2$O$_3$ 377
12.6.1 Nominally Undoped In$_2$O$_3$: Band Bending and Carrier Accumulation 377
12.6.2 Electronic States in the Bulk Bandgap 382
12.6.3 Dopant Induced Electronic States: Conduction Band Photoemission 384
12.6.4 Satellite Structure in Core Level Photoemission of Doped Samples 386
12.7 Summary and Outlook 388
References .. 390

13 Resistive Switching in Oxides 401
A. Mehonic and A.J. Kenyon

13.1 Introduction ... 401
13.2 Classes of Resistive Switching 403
13.3 Phenomenology of Filamentary Resistive Switching 405
Defects at Oxide Surfaces
Jupille, J.; Thornton, G. (Eds.)
2015, XVI, 462 p. 202 illus., 95 illus. in color., Hardcover
ISBN: 978-3-319-14366-8