Contents

1 **Introduction** ... 1
 References. ... 16

2 **Short History of PCM Applications in Building Envelopes** 21
 2.1 PCM for Building Applications—Background 21
 2.2 First PCM Application for Passive Solar Heating 22
 2.3 PCM Solar Thermal Storage Walls 23
 2.4 Impregnated Concrete Blocks and Ceramic Masonry 26
 2.5 PCM-Enhanced Gypsum Board and Interior
 Plaster Products .. 29
 2.6 Use of PCM-Enhanced Wall Cavity Insulation 34
 2.7 PCM-Enhanced Floors and Ceiling Systems 38
 2.8 PCM Used in Roofs and Attics 44
 2.9 PCM-Enhanced Windows and Window
 Attachment Products ... 49
 References. ... 53

3 **Overview of Basic Solid–Liquid PCMs Used in Building
 Envelopes—Packaging Methods, Encapsulation,
 and Thermal Enhancement** .. 61
 3.1 Introduction .. 61
 3.2 PCM Classification ... 63
 3.2.1 Introduction—Phase-Change Processes 64
 3.2.2 Organic PCMs .. 66
 3.2.3 Inorganic PCMs .. 74
 3.2.4 Eutectics and PCM Mixtures 81
 3.3 Long-Term Durability of PCMs in Building Envelopes 84
 3.4 PCM Packaging and Encapsulation Methods 89
 3.5 Enhancement Methods for Improved Thermal
 Conductivity of PCMs .. 96
 References. ... 98
4 Laboratory Thermal Testing of PCM-Enhanced Building Products and Envelope Systems

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>4.2 Scale of Thermal Performance Analysis and Testing Methods</td>
<td>108</td>
</tr>
<tr>
<td>4.3 Differential Thermal Analysis (DTA) (Material-Scale Testing)</td>
<td>111</td>
</tr>
<tr>
<td>4.4 Differential Scanning Calorimetry (DSC) Material-Scale Testing</td>
<td>115</td>
</tr>
<tr>
<td>4.4.1 Power Compensation DSC (PC-DSC)</td>
<td>116</td>
</tr>
<tr>
<td>4.4.2 Heat-Flux DSC (HF-DSC)</td>
<td>117</td>
</tr>
<tr>
<td>4.4.3 Different Modes of DSC Operation</td>
<td>118</td>
</tr>
<tr>
<td>4.4.4 DSC Accuracy Studies for Dynamic PCM Testing</td>
<td>122</td>
</tr>
<tr>
<td>4.5 T-history Method</td>
<td>123</td>
</tr>
<tr>
<td>4.6 Dynamic Heat Flow Meter Apparatus (DHFMA) Testing Method</td>
<td>127</td>
</tr>
<tr>
<td>4.7 Dynamic Hot-Box Testing Method</td>
<td>131</td>
</tr>
<tr>
<td>References</td>
<td>139</td>
</tr>
</tbody>
</table>

5 Examples of Full-Scale Field Experiments—Test Huts and Whole Buildings Containing PCM-Enhanced Building Envelope Components

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>5.2 Test Hut Field Testing</td>
<td>143</td>
</tr>
<tr>
<td>5.2.1 Test Huts Built by the Alberta Research Council Inc., Canada</td>
<td>145</td>
</tr>
<tr>
<td>5.2.2 University of Kansas Test Huts, Lawrence, KS, USA</td>
<td>146</td>
</tr>
<tr>
<td>5.2.3 University of Auckland Test Huts—New Zealand</td>
<td>147</td>
</tr>
<tr>
<td>5.2.4 Tianjin University Test Huts—Tianjin, China</td>
<td>148</td>
</tr>
<tr>
<td>5.2.5 University of Lleida Test Huts (Cubicles)—Lleida, Spain</td>
<td>148</td>
</tr>
<tr>
<td>5.2.6 Oak Ridge National Laboratory Roofing Testing Facility—Oak Ridge, TN, USA</td>
<td>149</td>
</tr>
<tr>
<td>5.2.7 Arizona State University Test Huts—Tempe, AZ, USA</td>
<td>150</td>
</tr>
<tr>
<td>5.2.8 University of Twente Test Boxes—Enschede, Overijssel, The Netherlands</td>
<td>151</td>
</tr>
<tr>
<td>5.2.9 PCM Roof Testing at Kuwait University—Safat, Kuwait</td>
<td>152</td>
</tr>
</tbody>
</table>
5.3 Whole-Building Field Testing

5.3.1 BASF 3-L PCM House—Ludwigshafen, Germany

5.3.2 BASF 3-L House—Kyonggi, Korea

5.3.3 Haus der Gegenwart—Munich, Germany

5.3.4 BASF House—Nottingham, England

5.3.5 Kingspan Lighthouse—Watford, Hertfordshire, UK

5.3.6 Crossway Eco-House—Staplehurst in Kent, UK

5.3.7 Academic Office Building, Charles Sturt University—New South Wales, Victoria, Australia

5.3.8 SARL Busipolis Company Building—Metz, France

5.3.9 Oak Ridge PCM House—Oak Ridge, TN, USA

5.3.10 TrekHaus—Portland, OR, USA

References

6 Thermal and Energy Modeling of PCM-Enhanced Building Envelopes

6.1 Introduction

6.2 Heat Transfer Through a Building Envelope Assembly Containing PCM

6.2.1 Heat Transfer Model for PCM-Enhanced Porous Materials and Thermal Insulations

6.2.2 Thermal Balance for a Wall Containing PCM-Enhanced Material

6.2.3 Time Constant of a Building Assembly Containing PCM

6.3 Numerical Performance Analysis of PCM-Enhanced Opaque Building Components

6.4 System-Scale Thermal Modeling

6.4.1 PCM Simulations with the Use of Finite-Difference and Finite-Element Computer Codes

6.4.2 PCM Simulations with the Use of MATLAB/Simulink

6.4.3 PCM Simulations with the Use of ANSYS Fluent and Other CFD Codes

6.5 Whole-Building-Scale Energy Modeling

6.5.1 TRNSYS

6.5.2 ESP-r—University of Strathclyde, Glasgow, UK

6.5.3 EnergyPlus—Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA

6.5.4 RADCOOL—Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA
6.5.5 CoDyBa .. 211
6.5.6 BSim .. 213
6.5.7 PCM Express 214
6.5.8 WUFI ... 215

6.6 Modeling of PCM-Enhanced Building Envelopes—Future Challenges .. 216
 6.6.1 Material Characteristics 217
 6.6.2 Understanding of Long-Term Performance Characteristics .. 219
 6.6.3 Validation of Computer Models 220
 6.6.4 Required Quality and Complexity of System-Scale and Whole-Building Computer Models 222

References .. 223

7 Basic Building Envelope Products Containing PCM and Related Patents .. 235
7.1 Introduction ... 235
7.2 PCM–Concrete Blends and Ready Plaster Blends Containing PCM .. 237
 7.2.1 Weber.Mur Clima® Plaster Mix 238
 7.2.2 Maxit-Clima Gypsum Plaster Mix 238
 7.2.3 Klima 544 TYNK Cement–Lime Plaster Mix 239
 7.2.4 ENERCIEL .. 240
7.3 PCM-Enhanced Gypsum Board and Panel Products .. 240
 7.3.1 Knauf PCM Smartboard® 240
 7.3.2 National Gypsum ThermalCORE® 241
 7.3.3 Alba® Balance Plaster Panels 242
7.4 PCM-Enhanced Composite Board Products .. 242
 7.4.1 Wood Fiber-Based Board Products Containing PCMs .. 243
 7.4.2 RACUS® PCM Wallboard—A Multi-layer Composite Sandwich System Containing PCM 244
 7.4.3 ThermaCool® Wallboards and Mineral Ceiling Tiles—Manufactured by Datum Phase Change Ltd., UK .. 246
 7.4.4 CoolZone—PCM-Enhanced Metal Ceiling Tiles Manufactured by Armstrong, UK 248
 7.4.5 Ecco Building Boards (EBBs)—Unfired Clay Building Boards Containing Microencapsulated PCM .. 248
 7.4.6 PCM-Enhanced Composite Energain® Boards Manufactured by DuPont™ 249
 7.4.7 EcoCore Floor Panels Containing PCM 250
 7.4.8 Dynamic Ecom4 Floor Tiles Containing PCM 251
7.4.9 DELTA®-COOL 21—Floor Application of Composite Containers with Inorganic PCM 251
7.5 PCM-Enhanced Mats, Membranes, and Arrays of PCM Containers .. 251
 7.5.1 BioPCmat™—Foil-Based Array of PCM Containers .. 252
 7.5.2 DELTA®-COOL 24—Foil-Based Array of PCM Containers .. 253
 7.5.3 Infinite R—A Triple-Layer Plastic Membrane Containing an Array of PCM Containers 254
7.6 PCM-Enhanced Building Insulation .. 255
 7.6.1 PCM-Enhanced Cellulose Fiber Insulation from Advanced Fiber Technologies (AFT), Bucyrus, OH, USA ... 255
7.7 PCM-Enhanced Window Components ... 256
 7.7.1 GLASSX Façade System .. 256
 7.7.2 Delta Cool 28 Translucent Heat Storage Containers for Building Fenestration 258
7.8 Current Patents in Area of PCM-Enhanced Building Envelopes .. 259
 7.8.1 Early PCM Encapsulation and Micro-packaging Patents ... 259
 7.8.2 Early Patents Describing PCM Integration with Building Products or Fabrics 261
 7.8.3 Patents Associated with PCM-Enhanced Thermal Insulations and Composites 263
 7.8.4 Patents Associated with PCM-Enhanced Building Envelope Products 267
References ... 270
PCM-Enhanced Building Components
An Application of Phase Change Materials in Building Envelopes and Internal Structures
Kosny, J.
2015, XV, 271 p. 101 illus., Hardcover
ISBN: 978-3-319-14285-2