Contents

1 Introduction

References: 16

2 Short History of PCM Applications in Building Envelopes

2.1 PCM for Building Applications—Background: 21
2.2 First PCM Application for Passive Solar Heating: 22
2.3 PCM Solar Thermal Storage Walls: 23
2.4 Impregnated Concrete Blocks and Ceramic Masonry: 26
2.5 PCM-Enhanced Gypsum Board and Interior Plaster Products: 29
2.6 Use of PCM-Enhanced Wall Cavity Insulation: 34
2.7 PCM-Enhanced Floors and Ceiling Systems: 38
2.8 PCM Used in Roofs and Attics: 44
2.9 PCM-Enhanced Windows and Window Attachment Products: 49

References: 53

3 Overview of Basic Solid–Liquid PCMs Used in Building Envelopes—Packaging Methods, Encapsulation, and Thermal Enhancement

3.1 Introduction: 61
3.2 PCM Classification: 63
3.2.1 Introduction—Phase-Change Processes: 64
3.2.2 Organic PCMs: 66
3.2.3 Inorganic PCMs: 74
3.2.4 Eutectics and PCM Mixtures: 81
3.3 Long-Term Durability of PCMs in Building Envelopes: 84
3.4 PCM Packaging and Encapsulation Methods: 89
3.5 Enhancement Methods for Improved Thermal Conductivity of PCMs: 96

References: 98
4 Laboratory Thermal Testing of PCM-Enhanced Building Products and Envelope Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>4.2</td>
<td>Scale of Thermal Performance Analysis and Testing Methods</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>Differential Thermal Analysis (DTA) (Material-Scale Testing)</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Differential Scanning Calorimetry (DSC) Material-Scale Testing</td>
<td>115</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Power Compensation DSC (PC-DSC)</td>
<td>116</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Heat-Flux DSC (HF-DSC)</td>
<td>117</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Different Modes of DSC Operation</td>
<td>118</td>
</tr>
<tr>
<td>4.4.4</td>
<td>DSC Accuracy Studies for Dynamic PCM Testing</td>
<td>122</td>
</tr>
<tr>
<td>4.5</td>
<td>T-history Method</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>Dynamic Heat Flow Meter Apparatus (DHFMA) Testing Method</td>
<td>127</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamic Hot-Box Testing Method</td>
<td>131</td>
</tr>
</tbody>
</table>

References.. 139

5 Examples of Full-Scale Field Experiments—Test Huts and Whole Buildings Containing PCM-Enhanced Building Envelope Components

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>5.2</td>
<td>Test Hut Field Testing</td>
<td>143</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Test Huts Built by the Alberta Research Council Inc., Canada</td>
<td>145</td>
</tr>
<tr>
<td>5.2.2</td>
<td>University of Kansas Test Huts, Lawrence, KS, USA</td>
<td>146</td>
</tr>
<tr>
<td>5.2.3</td>
<td>University of Auckland Test Huts—New Zealand</td>
<td>147</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Tianjin University Test Huts—Tianjin, China</td>
<td>148</td>
</tr>
<tr>
<td>5.2.5</td>
<td>University of Lleida Test Huts (Cubicles)—Lleida, Spain</td>
<td>148</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Oak Ridge National Laboratory Roofing Testing Facility—Oak Ridge, TN, USA</td>
<td>149</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Arizona State University Test Huts—Tempe, AZ, USA</td>
<td>150</td>
</tr>
<tr>
<td>5.2.8</td>
<td>University of Twente Test Boxes—Enschede, Overijssel, The Netherlands</td>
<td>151</td>
</tr>
<tr>
<td>5.2.9</td>
<td>PCM Roof Testing at Kuwait University—Safat, Kuwait</td>
<td>152</td>
</tr>
</tbody>
</table>
6 Thermal and Energy Modeling of PCM-Enhanced Building Envelopes .. 167
 6.1 Introduction ... 167
 6.2 Heat Transfer Through a Building Envelope Assembly Containing PCM .. 171
 6.2.1 Heat Transfer Model for PCM-Enhanced Porous Materials and Thermal Insulations 172
 6.2.2 Thermal Balance for a Wall Containing PCM-Enhanced Material .. 174
 6.2.3 Time Constant of a Building Assembly Containing PCM .. 177
 6.3 Numerical Performance Analysis of PCM-Enhanced Opaque Building Components 178
 6.3.1 An Overview of Numerical Models’ Developments .. 178
 6.3.2 Numerical Research Studies of PCM-Enhanced Building Products: Historical Outline 183
 6.4 System-Scale Thermal Modeling .. 189
 6.4.1 PCM Simulations with the Use of Finite-Difference and Finite-Element Computer Codes 191
 6.4.2 PCM Simulations with the Use of MATLAB/Simulink .. 194
 6.4.3 PCM Simulations with the Use of ANSYS Fluent and Other CFD Codes 195
 6.5 Whole-Building-Scale Energy Modeling 197
 6.5.1 TRNSYS .. 199
 6.5.2 ESP-r—University of Strathclyde, Glasgow, UK .. 204
 6.5.3 EnergyPlus—Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA 206
 6.5.4 RADCOOL—Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA 209
6.5.5 CoDyBa ... 211
6.5.6 BSim .. 213
6.5.7 PCM Express .. 214
6.5.8 WUFI ... 215
6.6 Modeling of PCM-Enhanced Building Envelopes—Future
Challenges .. 216
6.6.1 Material Characteristics ... 217
6.6.2 Understanding of Long-Term Performance
Characteristics .. 219
6.6.3 Validation of Computer Models 220
6.6.4 Required Quality and Complexity of System-Scale
and Whole-Building Computer Models 222

References ... 223

7 Basic Building Envelope Products Containing PCM
and Related Patents ... 235
7.1 Introduction ... 235
7.2 PCM–Concrete Blends and Ready Plaster Blends
Containing PCM .. 237
7.2.1 Weber.Mur Clima® Plaster Mix 238
7.2.2 Maxit-Clima Gypsum Plaster Mix 238
7.2.3 Klima 544 TYNK Cement–Lime Plaster Mix 239
7.2.4 ENERCIEL .. 240
7.3 PCM-Enhanced Gypsum Board and Panel Products 240
7.3.1 Knauf PCM Smartboard® ... 240
7.3.2 National Gypsum ThermalCORE® 241
7.3.3 Alba® Balance Plaster Panels 242
7.4 PCM-Enhanced Composite Board Products 242
7.4.1 Wood Fiber-Based Board Products
Containing PCMs ... 243
7.4.2 RACUS® PCM Wallboard—A Multi-layer
Composite Sandwich System Containing PCM 244
7.4.3 ThermaCool® Wallboards and Mineral Ceiling
Tiles—Manufactured by Datum Phase
Change Ltd., UK .. 246
7.4.4 CoolZone—PCM-Enhanced Metal Ceiling
Tiles Manufactured by Armstrong, UK 248
7.4.5 Ecco Building Boards (EBBs)—Unfired Clay
Building Boards Containing Microencapsulated
PCM .. 248
7.4.6 PCM-Enhanced Composite Energain® Boards
Manufactured by DuPont™ ... 249
7.4.7 EcoCore Floor Panels Containing PCM 250
7.4.8 Dynamic Ecom4 Floor Tiles Containing PCM 251
7.4.9 DELTA®-COOL 21—Floor Application of Composite Containers with Inorganic PCM 251

7.5 PCM-Enhanced Mats, Membranes, and Arrays of PCM Containers ... 251
7.5.1 BioPCmat™—Foil-Based Array of PCM Containers ... 252
7.5.2 DELTA®-COOL 24—Foil-Based Array of PCM Containers ... 253
7.5.3 Infinite R—A Triple-Layer Plastic Membrane Containing an Array of PCM Containers 254

7.6 PCM-Enhanced Building Insulation ... 255
7.6.1 PCM-Enhanced Cellulose Fiber Insulation from Advanced Fiber Technologies (AFT), Bucyrus, OH, USA ... 255

7.7 PCM-Enhanced Window Components .. 256
7.7.1 GLASSX Façade System ... 256
7.7.2 Delta Cool 28 Translucent Heat Storage Containers for Building Fenestration 258

7.8 Current Patents in Area of PCM-Enhanced Building Envelopes ... 259
7.8.1 Early PCM Encapsulation and Micro-packaging Patents .. 259
7.8.2 Early Patents Describing PCM Integration with Building Products or Fabrics 261
7.8.3 Patents Associated with PCM-Enhanced Thermal Insulations and Composites 263
7.8.4 Patents Associated with PCM-Enhanced Building Envelope Products 267

References .. 270
PCM-Enhanced Building Components
An Application of Phase Change Materials in Building Envelopes and Internal Structures
Kosny, J.
2015, XV, 271 p. 101 illus., Hardcover
ISBN: 978-3-319-14285-2