1 Frictional Force—Introduction ... 1
 1.1 Introduction ... 1
 1.2 BFMC—Brake Friction Material Composite—Definition 2
 1.2.1 Characteristics Defining the System 2
 1.2.2 Nature of Brake Friction Material Composite (BFMC) 4
 1.2.3 Mechanisms Manifesting the Dynamics 10
 1.2.4 BFMC System—Process 10
 1.2.5 Definition of BFMC System 10
 1.2.6 Properties of the System 11
 1.2.7 Dynamical and Complex Systems 11
 1.2.8 BFMC Systemic Attributes 12
 1.2.9 Complex Systems—Definition 12
 1.2.10 Complex Systems ... 13
 1.2.11 Definition of Composite Materials 19
 1.2.12 Friction Material Composites (FMC) 21
 1.2.13 Brake Friction Material Composites (BFMC) 21
 1.2.14 Brake Friction Material Composites (BFMC) 21
 with Metal Matrix .. 21
 1.2.15 Brake Friction Material Composite (BFMC) 21
 with Polymer Matrix ... 21
 1.2.16 Brake Friction Material Composite Multimatrix 22
 1.3 Basic Issues of Friction Material Particle Interphases 22
 1.4 Disk Pad Rotor and Caliper Assembly 23
 1.5 An Account of Frictional Force 23
 1.6 Characteristics of Molecular Forces 26
 1.7 What Is a Frictional Force? 27
 1.8 What Happens in a Frictional Contact Surface? 27
 1.9 Transfer Film Layer in a Frictional Contact Area 29
1.10 Nanostructure Metallic Materials for Enhanced Wear and Control on Friction: Ban on Copper Under the Legislation Bills SB6557 and S 346 Passed in USA and California .. 30
1.11 Composite Coatings for Friction and Wear Properties 31
1.12 Geometrical Surfaces and the Forces of Friction 31
1.13 New Class of Quasicrystalline Materials 32
1.14 Essential Virtues of Brake Friction Material Composite 38
1.14.1 Different Types of Coefficients of Friction 38
1.15 Test Conditions of μ–V Testing—BMI (Bismaleimide) Polymeric Matrix-Based Composite System in a Non-asbestos to Asbestos Formulations Compared 42
1.15.1 Coefficient of Friction—Brake Liner Fitted with “S” Cam Brake ... 43
1.15.2 Wear Rate .. 44
1.15.3 Thermal Damage .. 45
1.16 Virtues of a Good Friction Material 45
1.17 Key Characteristics of Friction Material Composite in Meeting the Above Said Virtues 46
1.18 Fading Friction .. 49
1.19 Noise Elimination Sequence 50
1.19.1 Sequence to Control Good Braking, Low Wear with Minimal or No Noise 51
1.19.2 The Vibration Components from the Radial Direction of the Rotor Has the Following Components .. 54
1.19.3 Noise Search Graph .. 56
1.19.4 Noise Occurrence with Pressure and Temperature 56
1.19.5 Frequency Versus Peak Level Decibels in Relation to Temperature Scale ... 56
1.19.6 Typical Noise Search for Varying Amplitude 59
1.20 Compressibility and Judder Vibration-Related Issues in a Disk Pad: Compressibility of the Pad—And Cold Hot ... 61
1.20.1 High and Low Speed Judder 61
1.21 Kinetic Coefficient of Friction: Theoretical Considerations ... 65

2 Design Essentials—Friction Material Composite System 75
2.1 Brake and Vehicle Data .. 76
2.1.1 Data Collection Before Attempting Any Design 77
2.1.2 Basic Engineering Calculations to Design the Torque for Any Vehicle Model—Data Assumed 78
2.1.3 Limiting Brake Torque ... 79
2.2 Design Drawing as an Input from the Original Equipment Manufacturer .. 79
 2.2.1 Brake and Vehicle Data .. 80
2.3 Braking Ratio .. 81
2.4 Inertia ... 81
2.5 Constants ... 83
2.6 Terrain/Landform Topography as a Design Input 83
2.7 Contacting Surface—Rotor Disk and Drum Details as a Design Input .. 84
 2.7.1 Friction-Induced Changes at the Rotor Surface 84
2.8 Brake Roughness ... 85
 2.8.1 Roughness—Vibrational Noise 85
 2.8.2 Rotor Wear ... 87
 2.8.3 Rotor Thickness Variation Due to Excessive Heat 87
 2.8.4 Disk Brake Roughness (DBR) Measurement 87
 2.8.5 AFM—Brake Pad Roughness 88
 2.8.6 Roughness Measurements in a Dynamometer 91
 2.8.7 Brake Design Factors—Sliding Calipers 92
 2.8.8 Thickness Variation Due to Manufacturing Reasons .. 93
 2.8.9 Abrasive Brake Pads ... 95
 2.8.10 Metallographic Studies on Gray Cast Iron Samples of the Drum .. 97

3 Rolling Motion .. 99
 3.1 Pure Rolling Motion .. 99
 3.2 Sliding Wear ... 101
 3.2.1 Wear in a Rail Braking Wheel 101
 3.2.2 Deformation and Static Friction 104
 3.2.3 Torque Versus Angular Velocity 105
 3.2.4 Translational Kinetic Energy Versus Rotational Kinetic Energy of the Gyrating Mass 105
 3.3 Circular Motion—Theoretical Considerations 107
 3.3.1 Angular Displacement and Angular Velocity 107
 3.3.2 Relation Between Linear and Angular Velocity 109
 3.3.3 Angular Acceleration 110
 3.3.4 Centripetal Acceleration (Uniform Circular Motion) .. 111
 3.3.5 Tangential Acceleration and Centripetal Acceleration .. 113
 3.3.6 Dynamics of Uniform Circular Motion 119
 3.3.7 Dynamics of Nonuniform Circular Motion 126
4 Formulation Design

4.1 Role of Fibers and Fillers to Be Cited

4.1.1 Materials Bear Effect on Formulation and Process

4.1.2 Zero-, One-, Two-, and Three-Dimensional Fillers and Fibers

4.1.3 Axial Planar Reinforcement

4.1.4 Dispersion Strengthened (Particulate) Composites, Structure, and Properties

4.2 Formulation Design

4.2.1 What Does a Friction Material Composite Constitute?

4.2.2 Selection of Design of Experiment DOE as an Option

4.2.3 Fractional Factorial Design—BFMC

4.3 Specific Functional Role of Materials in BFMC—System Dependent

4.4 Factors That Can Affect Friction

4.5 Design Control for—Design of “Friction Materials Composite”

4.5.1 Design Control for Undertaking Design of Process Control

4.6 Documents to Be Generated All Have to Be Numbered and Indexed for Cross Referencing—BFMC

4.7 Activity Chart for Design Control of “Friction Materials”

4.8 Technical Documents Required for Manufacture of Friction Material Design Product

4.9 Design Route Selection for the Brake System in Operation

4.10 BFMC Manufacturer, Sequence of Design Approval Process

4.11 Critical Raw Materials Used in BFMC Design and Their Characteristics

4.12 Typical Specification and Level of Dosage Used in a Friction Material Formulation

4.13 General Specification Used in Friction Material Composite MOS₂

4.14 Simple Material Selection Sequence

4.15 Interrelatiohship Between Material, Design and Process

4.16 Design Process for BFMC Selection

4.17 Disk Pad Material

4.17.1 Organic

4.17.2 Semimetallic

4.17.3 Metallic

4.17.4 Ceramic Brake Pads and Linings
4.17.5 Sintered Friction Material 184
4.17.6 Ceramic Potassium Titanate Fiber-Filled System in Non-asbestos Design—Functional Material Characteristics 185
4.18 Design of Formulation, Process for the Above Said Groups of Brake Pads and Liners .. 185
4.19 Brake System as an Essential Integration for a Good Performing Pad, Liner .. 186
4.20 Materials Point of View of the Formulation Design 187
4.21 Criteria for Selection of Materials for Designing a Friction Material Formulation .. 188
4.22 Material Specifications as Control in a Formulation 188
4.23 Materials Used in a Friction Material Composite Formulations for Automotive and Rail Braking Applications Include .. 189
4.24 Basic Physical, Thermal, and Mechanical Tests Done on a Friction Material Formulation—Prototype Samples 190

5 Design of Experiments .. 193
5.1 Fractional Factorial Design 193
5.1.1 General Guiding Principles for a Fractional Factorial Experiment Is Given Below 194
5.1.2 Experimental Objective 194
5.1.3 Important Characteristics 195
5.1.4 Design of Experiments: Factorial Experiment Design Tables .. 195
5.1.5 Determine the Acceptance Criteria 196
5.1.6 Picking Up the Acceptance Criteria 200
5.1.7 Calculating Samples Per Run 200
5.2 Brake Shoe Bonding Factors and Levels 201

6 BFMC—Processing .. 205
6.1 Process Design Control—Parameter 205
6.1.1 Mixing, Blending, Tumbling 205
6.1.2 Mixer Designs/Configuration 209
6.1.3 Mixing Sequence with Time of Addition 210
6.1.4 Effective Homogenization—Measure 210
6.1.5 Selection of the Press 211
6.1.6 Press Parameters—Sample Specification (Data Provided Purely as an Indication of Specification) 213
6.1.7 To Give a Basic Account of the Sequence of Operation of a Press in One Cycle—Disk Pad 216
6.1.8 Possible Hydraulic Press Issues Related
to Maintenance Which Can Normally Hamper
the Efficiency of the Press 217

6.1.9 Design Control Plan: Disk Pad Manufacturing,
PFMEA—Product Failure Mode Effect Analysis. . . 218

6.1.10 Predesign Plan 218

6.1.11 Significant Characteristics 219

6.2 Design Control Plan 219

6.2.1 Disk Brake Pad Control Plan 219

6.2.2 Disk Brake Pad (Press Line) In-process
Inspection Multilayers Hot Press 257

6.2.3 Disk Brake Pad (Press Line) In-process Inspection
Single Layer Hot Press 258

6.2.4 Number: Disk Brake Pad Final Inspection 259

6.2.5 DBP Attachments Incoming Inspection 260

6.2.6 Store Shipment Pack 261

6.2.7 Quality Objectives Zero Defects 262

6.2.8 Production Reject Modes (pcs) 263

6.2.9 Process Travel Control Card Disk Brake Pad 264

6.2.10 Incoming Raw Material Inspection 265

6.2.11 DBP Attachments Incoming Inspection 266

6.2.12 Raw Material—Mixing, Coating, and Sieving 267

6.2.13 DBP (Finishing Line) In-process Inspection 268

6.2.14 Glue Spray and Oven Drying In-process Inspection.... 269

6.2.15 Rivet Incoming Inspection 270

6.3 A Good Manufacturing Layout 270

6.4 Typical Tests Done in a Brake Lining, Brake Pad
(Exclude Some of the Tests for Brake Pads) Non-asbestos
Brake Lining ... 272

7 BFMC—Formulations and Processes 273

7.1 Backup Layer 273

7.1.1 Hot Shear Test on a Backup Layer—Sample Data ... 274

7.1.2 Formulations 275

7.2 Molding Process—Brake Linings and Brake Pads 275

7.2.1 Dry Mix Process 276

7.3 History of Evolution of Semimetallic Disk Brake Pads 278

7.4 Evolution of NAO Nomenclature After Semimetallic
and Metallic Disk Pads 279

7.5 Mixing Cycles—Time and Sequence of Addition
as an Important Factor 280

7.6 Controlling the Mixing Action 280

7.7 Controlling Mixing Efficiency 281

7.8 Ceramic and Nonasbestos Organic Formulas 281
7.9 Horse Power Requirements .. 282
7.10 Wet Mix ... 282
7.11 Mixing Action .. 285

8 Laws and Rules Governing Friction Materials 287

9 Total Quality Management ... 291

10 An Account of Copper-Free, Non-Metallic Friction Material
 Designs—Current Issues and Solution 311
 10.1 Ceramic Route as a Solution to Copper-Free, Nonmetallic
 Brake Pad Design .. 320
 10.1.1 Technical Aspects of an Effective Ceramic
 Material ... 320
 10.2 Basic Understanding of Ceramics Through Electron
 Mechanism .. 322
 10.3 Thermal Conductivity .. 324

11 Test Requirements in an Automotive BFMC Design 327
 11.1 World Class Test Specifications for Disk Brake
 Pads: Methods of Testing, Procedures with Standards 327
 11.2 Electrical Resistivity Measurements in Brake Friction
 Material Composite (BFMC) 328
 11.2.1 Volume Resistance and Surface Resistance
 Measurements for Copper Free, Non-metallic
 Systems and Others for Bench Marking
 and Comparison .. 328
 11.3 Essential Physical Properties Enumerated: Not All Tests
 Are Covered ... 330
 11.3.1 Density .. 330
 11.3.2 Solvent Extraction Test for Uncured Resin
 in the Material: A Value <2 % Is Healthy >2 %
 Swell Is Possible .. 331
 11.3.3 Particle Size for 50 g Sample 332
 11.3.4 Porosity Measurement 333
 11.3.5 Gordon Kline—Determination of Hexamethylene
 Tetramine—Cure Content in the Resin 334
 11.3.6 pH Index—Hydrogen Ion Concentration 335
 11.3.7 Pad Shear Test with Shear Force 335
 11.3.8 Test for Cold Compressibility of the Pad 338
 11.3.9 Test for Pad Swell .. 342
 11.3.10 Test for Swell and Growth 343
 11.4 Backing Plate Surface Treatment—Corrosion Resistance 344
 11.5 System Overview of the Passenger Car Dynamometer 344
Friction Material Composites
Copper-/Metal-Free Material Design Perspective
Sundarkrishnaa, K.
2015, XXXIV, 372 p. 169 illus., 67 illus. in color., Hardcover
ISBN: 978-3-319-14068-1