Contents

1 From Strict Determinism to Self-organization 1
 1.1 Deterministic Approaches to Development: Expectations and Impediments .. 1
 1.1.1 Lessons from Embryonic Regulations 1
 1.1.2 Can Embryonic Inductions Be Regarded as Cause–Effect Relations? .. 8
 1.1.3 Genetic Program of Development: Does It Actually Exist? ... 9
 1.2 Main Notions and Principles of SOT, Applied to Developmental Events ... 11
 1.2.1 Translating Developmental Events into the Language of Symmetry Theory .. 11
 1.2.2 Parametric and Dynamic Regulations: Several Basic Models .. 21
 1.2.3 Shaping Without Prepatterns ... 31
 1.2.4 Brief Biologically Oriented Exposure of Some Notions and Principles of Mechanics 36
 1.3 Recommended Readings .. 39
 References ... 40

2 From Molecules to Cells: Machines, Symmetries, and Feedbacks ___ 43
 2.1 Introductory Remarks ... 43
 2.2 Chemo-Mechanical Transduction and Molecular Machines 44
 2.3 Structures and Actions of Supramolecular Machines, Treated in Symmetry Terms 46
 2.4 Hierarchy of Stressed Networks and the Condition of Force Balance .. 50
 2.5 Final Remarks on Supramolecular Machines 52
 2.6 From Self-assembly to Self-organization: Temporal and Spatial Symmetry Breaks 53
2.7 Metastable (“Glassy”) States of the Cytoskeleton and Energy Wells .. 56
2.8 Cell-Matrix and Cell–Cell Contacts: Mechanodependent Self-organization 58
2.9 Transmission and Regulation of Mechanical Forces in Cell Cortex .. 63
2.10 Symmetry Breaks in Entire Cells ... 65
References .. 70

3 Morphogenesis on the Multicellular Level: Patterns of Mechanical Stresses and Main Modes of Collective Cell Behavior ... 75
3.1 Introductory Remarks .. 75
3.2 Patterns of Mechanical Stresses (MS) in Developing Embryos 76
 3.2.1 MS Patterns in Amphibian Embryos: Methods of Detection and Mapping .. 76
 3.2.2 Mechanical Stresses in the Embryos of Other Taxonomic Groups 82
 3.2.3 Mechanical Stresses in Post-embryonic Epithelia ... 84
 3.2.4 Tensile Patterns and Developmental Order 86
3.3 Main Modes of Collective Cell Behavior ... 88
 3.3.1 Homeostatic Cell Reactions .. 88
 3.3.2 Modes of Cell Alignment .. 90
References .. 108

4 Morphomechanical Feedbacks .. 113
4.1 General Comments .. 113
4.2 Evidences for Hyper-restoration of Mechanical Stresses 115
 4.2.1 Molecular–Supramolecular Levels .. 115
 4.2.2 Cellular–Supracellular Levels .. 116
4.3 General Premises and Formulation of HR Model .. 124
4.4 Some Basic Properties of HR Responses ... 125
4.5 Main HR-Based Morphomechanical Feedbacks .. 128
 4.5.1 Contraction–Extension Feedback (CEF) ... 128
 4.5.2 Curvature-Increasing Feedback (CIF) .. 129
 4.5.3 Extension–Extension Feedback (EEF) .. 130
4.6 Reconstructing Developmental Successions in Terms of HR Model 130
 4.6.1 Morphomechanics of Zygote .. 131
 4.6.2 Morphomechanics of Cytotomy .. 133
 4.6.3 Morphomechanics of Blastulation and Gastrulation 135
 4.6.4 Morphomechanics of the Post-gastrulation Events 144
 4.6.5 Morphomechanical Approaches to Cell Differentiation 150
References .. 154
5 Morphomechanics of Plants ... 157
Andrei Lipchinsky

5.1 An Outline Survey of Self-stressed Plant Architecture
and Its Implications for Plant Mechanobiology 157

5.2 Organogenetic and Proliferative Events at the Shoot Apex
Are Correlated, but not Coupled, and Are Under Control
by a Non-local Master Field .. 161

5.3 Stress Pattern, Cortical Microtubule Dynamics,
and the Orientation of Nascent Cellulose Microfibrils
Are Wired into the Circuitry Modulating Plant
Morphogenesis ... 164

5.4 Stress-Dependent Polarization of Auxin Transporters
Is Pivotal in Spatiotemporal Patterning of Organ Initiation
at the Shoot Apex ... 167

5.5 Expansins—Stress-to-Strain Actuators that Play a Preeminent
Role in Plant Morphogenesis 169

5.6 A More Detailed Analysis of Tissue Stresses at the Shoot
Apex and Their Significance for Plant Morphogenesis 174

5.7 Tissue Stresses and Morphogenesis in Roots 179

References .. 185

Concluding Remarks .. 191
Morphomechanics of Development
Belousov, L.V.
2015, XV, 195 p. 55 illus., 45 illus. in color., Hardcover
ISBN: 978-3-319-13989-0