Contents

1 **Point-of-Care Diagnostics** ... 1
 1.1 The Development of Rapid Diagnostics 3
 1.2 Sensing Mechanisms ... 7
 1.2.1 Colorimetric Reagents ... 7
 1.2.2 Electrochemical Sensors .. 12
 1.2.3 Colloidal Nanoparticles (NPs) 13
 1.2.4 Chemiluminescence (CL) 13
 1.2.5 Electrochemiluminescence (ECL) 14
 1.2.6 Fluorescence .. 15
 1.2.7 Genetically-Engineered Cells 15
 1.3 Next Generation Diagnostics ... 15
 References ... 17

2 **Fundamentals of Holographic Sensing** 27
 2.1 Fabrication of Optical Devices 27
 2.2 History of Holography .. 28
 2.3 The Origins and Working Principles of Holographic
 Sensors ... 32
 2.4 Computational Modelling of Holographic Sensors
 in Fabrication and Readout 37
 2.4.1 Photochemical Patterning 37
 2.4.2 Simulations of the Optical Readouts 39
 2.5 Conclusions .. 45
 References ... 46

3 **Holographic pH Sensors** .. 53
 3.1 Holographic pH Sensors via Silver-Halide Chemistry 53
 3.2 Fabrication of Holographic pH Sensors Through
 in Situ Size Reduction of Ag0 NPs 55
3.3 Characterisation of Holographic pH Sensors

3.3.1 Microscopic Imaging of Holographic pH Sensors

3.3.2 Effective Index of Refraction Measurements

3.3.3 Angular-Resolved Measurements

3.3.4 Diffraction Efficiency Measurements

3.3.5 Polymer Thickness and Roughness Measurements

3.4 Optical Readouts

3.4.1 Holographic pH Sensors Fabricated Through Silver Halide Chemistry

3.4.2 Holographic pH Sensors Fabricated Through in Situ Size Reduction of Ag₉ NPs

3.4.3 Interference Due to Metal Ions

3.4.4 Ionic Strength Interference in pH Measurements

3.4.5 Sensing pH in Artificial Urine

3.4.6 Paper-Based Holographic pH Sensors

3.5 Discussion

References

4 Holographic Metal Ion Sensors

4.1 Fabrication of Holographic Metal Ion Sensors via Photopolymerisation

4.2 Optical Readouts

4.2.1 Organic Solvents in Water

4.2.2 Quantification of Cu²⁺ and Fe²⁺ Ions in Aqueous Solutions

4.3 Conclusions

References

5 Holographic Glucose Sensors

5.1 Diabetes Mellitus

5.2 Holographic Glucose Sensors

5.3 Computational Modelling of Holographic Glucose Sensors

5.4 Fabrication of Holographic Glucose Sensors

5.5 Holographic Glucose Sensors for Urinalysis

5.5.1 Holographic Glucose Sensor Readouts

5.5.2 Holographic Glucose Sensor Readouts in Artificial Urine

5.5.3 Lactate and Fructose Interference

5.5.4 Interference Due to Osmolality

5.5.5 Tuning of the Wavelength Shift Range of the Holographic Glucose Sensor

5.5.6 Exposure Bath to Tune the Base Position of the Bragg Peak

References
5.6 Kinetic Theory for Hydrogel Swelling 120
5.7 Quantification of Glucose Concentration in Urine 122
5.8 Lactate and Fructose Interference 125
5.9 Conclusions .. 128
References ... 130

6 Mobile Medical Applications ... 135
6.1 Global Health and Mobile Medical Applications 135
6.2 A Smartphone Algorithm for the Quantification of Colorimetric Assays ... 138
 6.2.1 Calibration of the Application 138
 6.2.2 User Interface of the Smartphone Application 140
 6.2.3 Colorimetric Measurements 141
6.3 Conclusions .. 145
References ... 146

7 The Prospects for Holographic Sensors 149
7.1 The Development of Fabrication Approaches 149
7.2 Ligand Chemistry .. 152
7.3 Multiplexing Holographic Sensors with Microfluidic Devices ... 155
7.4 Readouts with Smartphones and Wearable Devices 156
7.5 The Vision for Holographic Sensors 158
References ... 159
Holographic Sensors
Yetisen, A.K.
2015, XVII, 162 p. 72 illus., 55 illus. in color., Hardcover
ISBN: 978-3-319-13583-0