Contents

1 Introduction .. 1
 1.1 Problem Statement .. 3
 1.2 Research Question and Methodology 4
 1.3 Impact of Thesis Contributions 5
 1.4 Structure of the Thesis 6

2 Technical Background, Preliminaries and Assumptions 9
 2.1 The Rootkit Evolution 9
 2.2 Typical x86-Based System Architecture 12
 2.3 Intel x86 Based Host Central Processing Unit 14
 2.4 Direct Memory Access 16
 2.5 Bus Master .. 17
 2.6 Input/Output Memory Management Units 18
 2.7 Trust and Adversary/Attacker Model 18

3 Related Work .. 21
 3.1 DMA Attacks ... 21
 3.1.1 Devices Connectable from the Outside 21
 3.1.2 Devices Firmly Established Inside the Platform
 Chassis ... 23
 3.2 Countermeasure Approaches 24
 3.2.1 Measured Firmware 24
 3.2.2 Signed Firmware 25
 3.2.3 Software/Latency-Based Attestation 25
 3.2.4 Monitoring Approaches 26
 3.2.5 Bus Snooping Approaches 26
 3.2.6 Sensitive Data Protection 27
 3.2.7 Input/Output Memory Management Unit 27

xiii
3.3 Secure Communication Channels Considering Platform State Reporting .. 27
3.3.1 Trusted Platform Module Based Approaches 28
3.3.2 Co-processor and Smart Card Based Approaches 30

4 Study of a Stealthy, Direct Memory Access Based Malicious Software .. 33
4.1 DMA Malware Definition .. 34
4.2 DMA Malware Core Functionality 35
4.3 Design and Implementation of DAGGER 36
 4.3.1 General Design .. 36
 4.3.2 Implementation Based on Intel’s ME Environment 37
 4.3.3 Attack Implementation Details for Linux and Windows Targets .. 39
4.4 Evaluation ... 43
 4.4.1 DMA Malware Fulfillment 43
 4.4.2 Effectiveness and Efficiency 45
 4.4.3 ME Firmware Condition ... 47
 4.4.4 I/OMMU .. 47
4.5 Countermeasures Considerations 47
 4.5.1 I/OMMU Issues .. 48
 4.5.2 Detection Approach Based on DMA Side Effects 49
4.6 Chapter Summary ... 51

5 A Primitive for Detecting DMA Malware 53
5.1 General Detection Model .. 55
5.2 An Implementation of the Detection Model 56
 5.2.1 Bus Master Analysis ... 57
 5.2.2 Bus Agent Runtime Monitor 62
5.3 Evaluation of the Detection Model Implementation 64
 5.3.1 Tolerance Value T ... 64
 5.3.2 Performance Overhead When Permanently Monitoring ... 65
 5.3.3 A Use Case to Demonstrate BARM’s Effectiveness 66
5.4 Limitations of Current BARM Implementation 68
5.5 Chapter Summary ... 69

6 Authentic Reporting to External Platforms 71
6.1 Implementation Independent Model 73
 6.1.1 Negotiating an Authentic Reporting Channel 74
6.2 Implementation of the Authentic Reporting Channel for BARM .. 76
 6.2.1 Bus Master Analysis: Ethernet Controller 76
 6.2.2 Implementation Based on OpenSSL 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Evaluation</td>
<td>86</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Expected Bus Activity Validation</td>
<td>87</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Network Performance Overhead Evaluation</td>
<td>89</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Test with DAGGER</td>
<td>90</td>
</tr>
<tr>
<td>6.4</td>
<td>Security Considerations</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>Chapter Summary</td>
<td>93</td>
</tr>
</tbody>
</table>

7 Conclusions and Future Work 95

References 99
Detecting Peripheral-based Attacks on the Host Memory
Stewin, P.
2015, XV, 108 p. 35 illus., 34 illus. in color., Hardcover
ISBN: 978-3-319-13514-4