Contents

1 **Similarity and Granulation** .. 1
 1.1 Introduction ... 1
 1.2 Similarity ... 2
 1.2.1 Graded Similarity ... 3
 1.3 Granulation ... 4
 1.4 On Selected Approaches to Granulation 7
 1.4.1 Granules from Binary Relations 8
 1.4.2 Granules in Information Systems from Indiscernibility 8
 1.4.3 Granules from Generalized Descriptors 9
 1.5 A General Approach to Similarity Based Granules 9
 1.5.1 Operations on Granules ... 10
 1.5.2 An Example of Granule Fusion: Assembling 10
 References ... 12

2 **Mereology and Rough Mereology: Rough Mereological Granulation** 17
 2.1 Mereology ... 17
 2.1.1 Mereology of Leśniewski ... 17
 2.2 Rough Mereology .. 21
 2.2.1 Rough Inclusions .. 22
 2.3 Granules from Rough Inclusions 25
 2.3.1 Rough Inclusions on Granules 27
 2.4 General Properties of Rough Mereological Granules 28
 2.5 Ramifications of Rough Inclusions 29
 References ... 30

3 **Learning Data Classification: Classifiers in General and in Decision Systems** ... 33
 3.1 Learning by Machines: A Concise Introduction 33
 3.1.1 Bayes Classifier .. 34
 References ... 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.6</td>
<td>Coverings by Granules Which Transfer the Smallest Number of New Objects: Cov6.</td>
<td>112</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Coverings by Granules Which Transfer an Average Number of New Objects: Cov7</td>
<td>112</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Coverings by Granules Which Transfer Maximal Number of New Objects: Cov8.</td>
<td>113</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Order-Preserving Coverings Proportional to the Size of Decision Classes: Cov9</td>
<td>113</td>
</tr>
<tr>
<td>5.3.10</td>
<td>Random Coverings Proportional to the Size of Decision Classes: Cov10</td>
<td>113</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Coverings Proportional to the Size of Decision Classes by Granules of a Minimal Size: Cov11</td>
<td>114</td>
</tr>
<tr>
<td>5.3.12</td>
<td>Coverings Proportional to the Size of Decision Classes by Granules of the Average Size: Cov12</td>
<td>114</td>
</tr>
<tr>
<td>5.3.13</td>
<td>Coverings Proportional to the Size of Decision Classes by Granules of a Maximal Size: Cov13</td>
<td>115</td>
</tr>
<tr>
<td>5.3.14</td>
<td>Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer the Smallest Number of New Objects: Cov14.</td>
<td>116</td>
</tr>
<tr>
<td>5.3.15</td>
<td>Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer the Average Number of New Objects: Cov15.</td>
<td>116</td>
</tr>
<tr>
<td>5.3.16</td>
<td>Coverings Proportional to the Size of Decision Classes, by Granules Which Transfer a Maximal Number of New Objects: Cov16.</td>
<td>117</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Session with Real World Data Sets</td>
<td>117</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of Results for Discrete Data Sets from UCI Repository</td>
<td>118</td>
</tr>
<tr>
<td>5.6</td>
<td>Validation of Results: Combined Average Accuracy with Percentage of Reduction of Object Number, and, $5 \times CV5$ Accuracy Bias.</td>
<td>151</td>
</tr>
<tr>
<td>5.7</td>
<td>Best Result Based on CombAGS and the Error $(acc_{r=1} - acc) \leq 0.02$</td>
<td>185</td>
</tr>
<tr>
<td>6</td>
<td>Layered Granulation</td>
<td>221</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>6.1.1</td>
<td>An Example of Multiple Granulation.</td>
<td>222</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Experiments with Real Data</td>
<td>227</td>
</tr>
<tr>
<td>6.2</td>
<td>Results of Experiments for Symbolic Data from UCI Repository</td>
<td>228</td>
</tr>
<tr>
<td>6.3</td>
<td>In Search for the Optimal Granulation Radius</td>
<td>253</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Results Pointed to by the Two-layered Granulation</td>
<td>255</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Comparison of Results Pointed by Double Granulation and Best CombAGS</td>
<td>261</td>
</tr>
</tbody>
</table>
6.3.3 A Comparison for Accuracy Error

\[acc_{r=1} = acc \leq 0.01 \] of CombAGS
and \[GranSize_{l=1} - GranSize_{l} \]

References ... 276

7 Naive Bayes Classifier on Granular Reflections:
The Case of Concept-Dependent Granulation 277

7.1 Naive Bayes Classifier 277

7.1.1 An Example of Bayes Classification 279

7.2 Results of an Experimental Session with Real Data ... 282

7.2.1 Examined Variants of Bayes Classifier 282

7.2.2 Evaluation of Results 282

7.2.3 A Discussion of Results 282

References ... 301

8 Granular Computing in the Problem of Missing Values 303

8.1 Introduction ... 303

8.1.1 A Survey of Strategies 303

8.1.2 Examples of Basic Strategies 306

8.2 The Experimental Session 310

8.2.1 The Methodology of the Experiment 310

8.2.2 Evaluation of Results 311

8.2.3 The Results of Experiments for Data Sets Damaged in 5 and 10 % 311

References ... 347

9 Granular Classifiers Based on Weak Rough Inclusions 349

9.1 Introduction ... 349

9.2 Results of Experiments with Classifiers
\[5_v1, 6_v1, 7_v1, 8_v1-8_v5 \] Based on the Parameter \(\varepsilon \) 349

9.3 Results of Experiments with Classifiers Based on Parameters \(\varepsilon \) and \(r_{catch} \) 355

9.4 Results of Experiments with Classifiers \[5_v3, 6_v3, 7_v3 \] Based on the Parameter \(\varepsilon \) 390

References ... 398

10 Effects of Granulation on Entropy and Noise in Data 399

10.1 On Entropy Behavior During Granulation 399

10.2 On Noise in Data During Granulation 400

10.3 On Characteristics of Data Sets Bearing on Granulation 409

11 Conclusions ... 417

References ... 422
Appendix A: Data Characteristics Bearing on Classification 423
Author Index 443
General Index 447
Symbols 451