Contents

Part I Characterization of Karst Aquifer

1 **Historical Overview on Karst Research**
 James W. LaMoreaux and Zoran Stevanović
 References

2 **Karst Environment and Phenomena**
 Zoran Stevanović
 2.1 Past Karst as a Human Shelter and Mythic Understanding of Karst
 2.2 Present—Man and Karst
 2.3 Water and Karstic Rocks
 2.4 Karst Classifications and Distribution
 2.4.1 Classifications
 2.4.2 General Distribution
 2.4.3 Regional Distribution
 References

3 **Characterization of Karst Aquifer**
 Zoran Stevanović
 3.1 Aquifer Geometry and Elements
 3.2 Permeability and Storativity
 3.3 Flow Types and Pattern
 3.4 Aquifer Recharge
 3.4.1 Non-geological Factors of Natural Recharge
 3.4.2 The Geological Factors Influencing Recharge
 3.5 Aquifer Discharge
 3.6 Quality of Karst Groundwater
 References
Part I Overview of Methods Applied in Karst Hydrogeology

Nico Goldscheider

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 The Duality of Karst Aquifers and Investigation Methods</td>
<td>127</td>
</tr>
<tr>
<td>4.2 The Karst Hydrogeology Toolbox</td>
<td>129</td>
</tr>
<tr>
<td>4.3 Geologic and Geophysical Methods</td>
<td>130</td>
</tr>
<tr>
<td>4.4 Speleological Methods</td>
<td>134</td>
</tr>
<tr>
<td>4.5 Hydrologic and Hydraulic Methods</td>
<td>135</td>
</tr>
<tr>
<td>4.6 Hydrochemical and Isotopic Methods</td>
<td>137</td>
</tr>
<tr>
<td>4.7 Artificial Tracer Methods</td>
<td>139</td>
</tr>
</tbody>
</table>

References: 143

Part II Engineering Aspects of Control and Protection of Karst Aquifer

5 Surface Waters and Groundwater in Karst

Ognjen Bonacci

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>149</td>
</tr>
<tr>
<td>5.2 Catchments in Karst</td>
<td>150</td>
</tr>
<tr>
<td>5.3 Karst Aquifers</td>
<td>153</td>
</tr>
<tr>
<td>5.4 Karst Springs</td>
<td>160</td>
</tr>
<tr>
<td>5.5 Karst Ponor</td>
<td>161</td>
</tr>
<tr>
<td>5.6 Karst Open Streamflows</td>
<td>163</td>
</tr>
<tr>
<td>5.7 Piezometers as a Crucial Source of Information in Karst</td>
<td>166</td>
</tr>
</tbody>
</table>

References: 167

6 Budget and General Assessment of Karst Groundwater Resources

Zoran Stevanović

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Budget Equation and Parameters</td>
<td>171</td>
</tr>
<tr>
<td>6.2 Classification of Groundwater Reserves</td>
<td>183</td>
</tr>
<tr>
<td>6.3 Assessment of Groundwater Reserves</td>
<td>186</td>
</tr>
<tr>
<td>6.4 Application of Groundwater Budget on Reserves Estimate</td>
<td>187</td>
</tr>
<tr>
<td>6.5 Case Studies and Exercises</td>
<td>191</td>
</tr>
</tbody>
</table>

References: 201

7 Evaluating Discharge Regimes of Karst Aquifer

Peter Malík

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Discharge Regime: Definition, Typical Karstic Manifestations</td>
<td>205</td>
</tr>
<tr>
<td>7.2 Spring Discharge Variability</td>
<td>208</td>
</tr>
<tr>
<td>7.3 Flow Duration Curve</td>
<td>213</td>
</tr>
<tr>
<td>7.4 Discharge Regime: Sub-regimes Versus Flow Components</td>
<td>215</td>
</tr>
<tr>
<td>7.5 Mathematical Description of Recession and Flow Components</td>
<td>216</td>
</tr>
<tr>
<td>7.6 Identification of Flow Components in Recession Curves</td>
<td>220</td>
</tr>
<tr>
<td>7.7 Calculations of Flow Component Volumes</td>
<td>224</td>
</tr>
<tr>
<td>7.8 Hydrograph Separation into Flow Components</td>
<td>227</td>
</tr>
</tbody>
</table>

References: 247
8 Vulnerability to Contamination of Karst Aquifers

Ana I. Marín and Bartolomé Andreo

8.1 Introduction ... 252
8.2 Vulnerability Mapping 253
8.3 EPIK Method .. 254
8.4 PI Method ... 256
8.5 COP Method ... 258
8.6 Validation ... 261
References ... 264

9 Physical Modeling of Karst Environment 267

Saša Milanović

9.1 Introduction ... 267
9.2 Background .. 268
9.3 Overview and Methodology 269
References ... 281

10 Mathematical Modeling of Karst Aquifers 283

Alex Mikszewski and Neven Kresic

10.1 Introduction .. 283
10.2 Summary of Numerical Modeling Techniques 285
 10.2.1 Equivalent Porous Media Formulation 285
 10.2.2 Modeling for Karst, the Conduit Flow Process (CFP) . .. 287
10.3 Case Study in Karst Modeling 290
 10.3.1 Conceptual Site Model 290
 10.3.2 EPM Model Formulation 292
10.4 EPM Model Results 294
10.5 Integrating the Conduit Flow Process 296
References ... 298

11 Tapping of Karst Groundwater 299

Zoran Stevanović

11.1 Tapping Karstic Groundwater Flow at Discharge
 Points—Springs .. 300
11.2 Tapping Karstic Groundwater Flow Within the Aquifer
 Catchment—Drilled Wells 308
 11.2.1 Drilling Technology 310
 11.2.2 Well Equipment (Casing, Screening, Gravel
 Packing, Protecting Well Cap) 313
 11.2.3 Well Development 317
 11.2.4 Well Testing (Pumping) 318
 11.2.5 Optimizing Yield, Install Pump, and Protect Well 320
References ... 334
12 Monitoring of Karst Groundwater

Saša Milanović and Ljiljana Vasić

12.1 Introduction 335
12.2 Location of Monitoring 337
12.3 Type of Monitoring 338
 12.3.1 Quantity 338
 12.3.2 Quality 339
12.4 Equipment Used for Monitoring 339
 12.4.1 Mechanical Devices 339
 12.4.2 Semiautomatic–Automatic 341
 12.4.3 Digital Devices 341
 12.4.4 Equipment for Water Quality Analysis ... 342
 12.4.5 Equipment for Pumping Tests 342
 12.4.6 Equipment for Groundwater Level Measurement ... 343
 12.4.7 Intervals of Monitoring 345
12.5 Monitoring Database 345
12.6 Monitoring Network Range 347
References 358

13 Catalog of Engineering Works in Karst and Their Effects 361

Petar Milanović

13.1 Introduction 361
13.2 Building Dams and Reservoirs in Karst 362
13.3 Underground Dams 387
13.4 Tunneling in Karst 389
13.5 Lessons Learned and Recommended Approach 393
13.6 Explanation of Some Specific Terms 395
References 396

Part III Regulating and Protecting Karst Aquifer—Case Studies

14 Managing Karst Aquifers—Conceptualizations, Solutions, Impacts 403

Zoran Stevanović

14.1 Introduction 403
14.2 Problem Definition and Research Procedure 404
14.3 Kinds of Hydrogeological Surveys 405
14.4 Conceptual Model and Solutions 407
14.5 Environmental Implications of the Engineering Works in Karst 411
14.6 Environmentally Safe Groundwater Extraction and Indicators 415
14.7 Conflicts from Karst Water Utilization 417
References 418
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1.1</td>
<td>Introduction</td>
<td>421</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Hydraulic Behavior Under Different Hydrological Conditions</td>
<td>423</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Geological and Hydrological Features of Terminio and Cervialto Karst Aquifers</td>
<td>427</td>
</tr>
<tr>
<td>15.1.4</td>
<td>Hydraulic Behavior During Droughts and Earthquakes</td>
<td>431</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Introduction</td>
<td>435</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Autocorrelation and Cross-Correlation Analyses</td>
<td>436</td>
</tr>
<tr>
<td>15.2.3</td>
<td>The Multiple Linear Regression Model</td>
<td>442</td>
</tr>
<tr>
<td>15.2.4</td>
<td>Model for Filling the Data Gap and Assess Catchment Size and Dynamic Storage</td>
<td>447</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Current Concepts for Assessing Extraction Effects</td>
<td>460</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Applied Model for Assessing Extraction Effects in an Aquifer System at Hydrogeological Exploration Early Stages</td>
<td>461</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Introduction</td>
<td>470</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Overview of Speleology and Cave Diving Explorations</td>
<td>472</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Introduction</td>
<td>490</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Solutions to Regulating Karstic Aquifers</td>
<td>490</td>
</tr>
<tr>
<td>15.5.3</td>
<td>Indicators of Prosperous Sites for Engineering Regulation</td>
<td>498</td>
</tr>
<tr>
<td>15.5.4</td>
<td>Regulation of Discharge Zone</td>
<td>501</td>
</tr>
<tr>
<td>15.5.5</td>
<td>Regulations in Wider Catchment Area</td>
<td>518</td>
</tr>
<tr>
<td>15.5.6</td>
<td>Recommended Methods and Programme in Hydrogeology Survey</td>
<td>522</td>
</tr>
</tbody>
</table>

References | 523 |
16.1.2 General Overview of Procedures for Preventing Leakage and Choosing Dam Sites 532

16.2 Karst Aquifers and Mining: Conflicts and Solutions 550
16.2.1 Introduction ... 550
16.2.2 Hydrogeological Types of Ore Deposits in a Karst Environment ... 551
16.2.3 Groundwater Inrush into Mining Operations 557
16.2.4 Dewatering of Ore Deposits in a Karst Aquifer Environment .. 560
16.2.5 Transformation of Karst Groundwater Quality 564

16.3 Remote Techniques for the Delineation of Highly Karstified Zones ... 567
16.3.1 Introduction ... 567
16.3.2 The Complexity and Categorization of Karst Terrains ... 568
16.3.3 The Concept of Mapping of Karstification by Using Remote Sensing and GIS 570
16.3.4 Discussion ... 578
16.3.5 Conclusion .. 579

16.4 Combat Mixture of Groundwater and Surface Waters in Karst ... 580
16.4.1 Introduction ... 580
16.4.2 Historical Experience 581
16.4.3 Hydraulic Mechanism and Methods to Identify Submerged Flows ... 582
16.4.4 Sustainable Tapping and Use of Fresh Karstic Waters ... 587

References .. 594

17 Hazards in Karst and Managing Water Resources Quality 601
Mario Parise, Nataša Ravbar, Vladimir Živanović, Alex Mikszewski, Neven Kresic, Judit Mádl-Szőnyi and Neno Kukurić

17.1 Hazards in Karst Environment and Mitigation Measures 601
17.1.1 Peculiarity of Karst ... 601
17.1.2 Sinkholes ... 604
17.1.3 Mass Movements .. 608
17.1.4 Floods ... 609
17.1.5 Loss of Karst Landscape 610
17.1.6 Mitigating Hazards in Karst 610

17.2 Advanced Strategies in Managing and Sustaining Karst Water Quality ... 614
17.2.1 Karst Groundwater Environmental Issues and Protection ... 614
17.2.2 The Concept of Vulnerability and Contamination Risk Assessment 615
17.2.3 Commonly Applied Methods in Karst 617
17.3 Delineation of Karst Groundwater Protection Zones

17.3.1 Introduction

17.3.2 Current Approaches to Sanitary Protection Zoning

17.3.3 Delineation of Sanitary Protection Zones Based on Fixed Radius and Travel Time

17.3.4 Delineation of Sanitary Protection Zones with Vulnerability Assessment

17.3.5 Delineation of Sanitary Protection Zones Using a Combined Approach

17.3.6 Delineation of Sanitary Protection Zones Using Groundwater Models

17.3.7 Monitoring in Support of Groundwater Source Protection

17.4 Remediation of Groundwater in Karst

17.4.1 Introduction

17.4.2 In Situ Treatment Technologies

17.4.3 Thermal Technologies

17.4.4 In Situ Chemical Oxidation (ISCO)

17.4.5 Bioremediation

17.4.6 Groundwater Containment: Pump and Treat

17.5 Genesis and Utilization of Thermal Flow in Deep Carbonate Systems

17.5.1 Introduction

17.5.2 Problem of Scales and Type of Flows in Karst Research

17.5.3 Genesis of Thermal Flow in Deep Carbonates and Consequences for Utilization

17.5.4 Drilling in Deep Karstified Formations

17.5.5 Summary and Conclusion

17.6 Transboundary Aquifers in Karst

17.6.1 Introduction

17.6.2 Transboundary Aquifers of the World

17.6.3 Methodological Approaches to TBA Assessment

17.6.4 International Agreements on Transboundary Aquifers

17.6.5 Concluding Remarks

References

List of Keywords