Contents

Part I Introduction to Balancing

1 Introduction .. 3

2 An Overview of Balancing Methods ... 7
 2.1 Shaking Force and Shaking Moment Balancing of Linkages 7
 2.1.1 Shaking Force Balancing of Linkages 8
 2.1.2 Shaking Moment Balancing of Linkages 12
 2.2 Shaking Force and Shaking Moment Balancing of Robots and
 Manipulators ... 19
 2.2.1 Shaking Force Balancing .. 19
 2.2.2 Shaking Moment Balancing ... 22
 2.3 Gravity Balancing in Robotics .. 27
 2.3.1 Gravity Compensation in Automatic Robot-Manipulators . . 27
 2.3.2 Gravity Compensation in Hand-Operated Balanced
 Manipulators (HOBM) ... 44
 2.3.3 Gravity Compensation in Rehabilitation Systems of Human
 Extremities, Exoskeletons and Walking Assist Devices 46

Part II Balancing of Linkages

3 Partial Shaking Force and Shaking Moment Balancing of Linkages 55
 3.1 Shaking Moment Minimization of Fully Force-balanced Planar
 Linkages by Displacing One Counterweight 56
 3.1.1 Complete Shaking Force and Partial Shaking Moment
 Balancing of Planar Linkages .. 56
 3.1.2 Numerical Example and Comparative Analysis 59
 3.2 Shaking Moment Minimization of Fully Force-balanced Planar
 Linkages by Displacing Several Counterweights 60
 3.2.1 Minimization of the Shaking Moment by Parallel
 Displacements of Counterweights Mounted on the Frame 60
 3.2.2 Example: Balancing of a Six-Bar Linkage 62
 3.2.3 Numerical Example ... 66
3.3 Shaking Moment Minimization of Fully Force-balanced Spatial Linkages .. 67
 3.3.1 Complete Shaking Force and Partial Shaking Moment Balancing of Spatial Linkages 67
 3.3.2 Numerical Example and Comparative Analysis 70

3.4 An Approximate Method of Calculating a Counterweight for the Optimum Shaking Force and Shaking Moment Balancing of Linkages ... 72
 3.4.1 Shaking Force Balancing 72
 3.4.2 Shaking Moment Balancing 73
 3.4.3 Numerical Example ... 74

4 Complete Shaking Force and Shaking Moment Balancing of Linkages ... 77
 4.1 Complete Shaking Force and Shaking Moment Balancing of In-Line Four-Bar Linkages by Adding a Class-Two RRR or RRP Assur Group ... 78
 4.1.1 Complete Shaking Force and Shaking Moment Balancing by Adding a Class-Two RRR Assur Group 78
 4.1.2 Complete Shaking Force and Shaking Moment Balancing by Adding a Class-Two RRP Assur Group 84
 4.1.3 Illustrative Examples and Numerical Simulations 87
 4.2 Complete Shaking Force and Shaking Moment Balancing of Planar Linkages by Adding the Articulated Dyads 90
 4.2.1 Complete Shaking Force and Shaking Moment Balancing of Sub-linkages 90
 4.2.2 Application of the Methods for Complete Shaking Force and Shaking Moment Balancing of Multilink Mechanisms ... 100
 4.3 Complete Shaking Force and Shaking Moment Balancing of RSS’R Spatial Linkages 101
 4.3.1 Statement of the Problem 101
 4.3.2 Coupler Shape Design 102
 4.3.3 Numerical Example .. 105
 4.3.4 Input Torque of the Balanced Linkage 106
 4.4 Design of Self-balanced Mechanical Systems 111
 4.4.1 Shaking Force Balancing 111
 4.4.2 Shaking Moment Balancing 113
 4.4.3 Numerical Example and Simulation Results 114

5 Balancing of Slider-Crank Mechanisms ... 117
 5.1 Generalized Lanchester Balancer 117
 5.1.1 Shaking Force Balancing of Off-set Crank-Slider mechanism .. 117
 5.1.2 Numerical Simulations 120
5.2 Balancing via the Properties of the Watt Gear-Slider Mechanism . . 121
 5.2.1 Watt Gear-Slider Mechanism.. 121
 5.2.2 Shaking Force and Shaking Moment of the Slider-Crank
 Mechanism .. 122
 5.2.3 Shaking Force and Shaking Moment Balancing 124
 5.2.4 Numerical Example ... 126

5.3 Shaking Moment Cancellation of Self-balanced Slider-Crank
 Mechanical Systems by Means of Optimum Mass Redistribution . . 129
 5.3.1 Shaking Force and Shaking Moment Balancing 129
 5.3.2 Numerical Example ... 131

5.4 Simultaneous Inertia Force/Moment Balancing and Torque
 Compensation of Slider-Crank Mechanisms 133
 5.4.1 Design of the Inertia Force/Moment Balanced and Torque
 Compensated Slider-Crank Mechanism 133
 5.4.2 Illustrative Example ... 136

5.5 Shaking Force and Shaking Moment Balancing of Slider-Crank
 Mechanisms via Optimal Generation of the Input Crank Rotation . 139
 5.5.1 Problem Statement .. 139
 5.5.2 Shaking Force and Shaking Moment Minimization 140
 5.5.3 Illustrative Example ... 142

Part III Balancing of Robot Manipulators

6 Balancing of Manipulators by Using the Copying Properties of
 Pantograph Mechanisms .. 147
 6.1 Design of Balancing Mechanisms for Spatial
 Parallel Manipulators: Application to the Delta Robot 147
 6.1.1 Description of the Balancing Mechanism 148
 6.1.2 Minimization of the Torque by a Constant Force Applied to
 the Robot Platform ... 151
 6.1.3 Minimization of the Input Torques by a Variable Force
 Applied to the Platform of the Robot 157
 6.1.4 Prototype and Experimental Validation 159
 6.2 Design of Self-Balanced Parallel Manipulators:
 PAMINSA with 4-dof ... 163
 6.2.1 A New Concept for the Design of Partially
 Decoupled Parallel Manipulators 164
 6.2.2 Static Analysis of the PAMINSA with 4-dof 175
 6.2.3 Prototype and Experimental Validations 179
 6.3 Design and Balancing of Hand-operated Manipulators 182
 6.3.1 Methodology .. 184
 6.3.2 Application .. 185
7 Shaking Force and Shaking Moment Balancing of Robot Manipulators .. 189
 7.1 Complete Shaking Force and Shaking Moment Balancing of 3-dof 3-RRR Parallel Manipulators 190
 7.1.1 3-dof 3-RRR Planar Parallel Manipulator and Dynamic Model with Concentrated Masses 190
 7.1.2 Balancing of Legs 191
 7.1.3 Balancing of the 3-RRR Robot by Using an Inertia Flywheel 196
 7.2 Complete Shaking Force and Shaking Moment Balancing of Planar Parallel Manipulators with Prismatic Pairs 199
 7.2.1 Complete Shaking Moment and Shaking Force Balancing by Adding an Idler Loop Between the Base and the Platform ... 199
 7.2.2 Complete Shaking Force and Shaking Moment Balancing Using Scott-Russell Mechanism 203
 7.3 Shaking Force Minimization of High-speed Robots via Centre of Mass Acceleration Control 212
 7.3.1 Minimization of the Shaking Forces via an Optimal Motion Planning of the Total Mass Centre of Moving Links 212
 7.3.2 Illustrative Examples 215
 7.4 Balancing of Robot Manipulators via Optimal Motion Control 224
 7.4.1 Dynamic Balancing of the SCARA Robot 224
 7.4.2 Dynamic Balancing of a Position/Orientation Decoupled PAMINSA Robot 230

8 Gravitational Force Balancing of Robotic Systems 241
 8.1 Balancing of Pantograph Mechanisms 241
 8.2 Optimal Balancing of the Parallel Robot for Medical 3D-ultrasound Imagining 243
 8.2.1 Complete Static Balancing 244
 8.2.2 Input Torques .. 245
 8.2.3 Minimization of the Root-mean-square Values of the Input Torques 247
 8.2.4 Results ... 251
 8.3 Improvement of Balancing Accuracy of Robot-manipulators Taking into Account the Spring Mass 252
 8.3.1 Improvement of Balancing Accuracy by Taking into Account the Spring Mass 252
 8.3.2 Numerical Examples and Error Analysis 257
 8.3.3 Application to the Balancing of Leg Orthosis for Rehabilitation Devices 260
8.4 Optimal Balancing of Serial Manipulators
with Decoupled Dynamics 262

8.4.1 Complexity and the Nonlinearity of Robot Arm Dynamics:
Basic Notions ... 262

8.4.2 Design of Decoupled 2-dof Planar Serial Manipulator 264
8.4.3 Design of Decoupled 3-dof Spatial Serial Manipulator 266
8.4.4 Illustrative Examples 268

References .. 271
Balancing of Linkages and Robot Manipulators
Advanced Methods with Illustrative Examples
Arakelian, V.H.; Briot, S.
2015, XVI, 291 p. 204 illus., 15 illus. in color., Hardcover
ISBN: 978-3-319-12489-6