# Contents

1 Introduction ........................................... 1

2 Microbial CO Metabolism ............................... 5

3 CO-oxidizing Microorganisms ............................. 11
   3.1 CO-utilizing Hydrogenogenic Bacteria and Archaea ........ 12
      3.1.1 CO-utilizing Facultatively Anaerobic Bacteria ......... 15
      3.1.2 CO-utilizing Obligately Anaerobic Bacteria and Archaea ......................... 17
   3.2 CO-utilizing Sulfate-Reducing Bacteria and Archaea .......... 19
   3.3 CO-utilizing Sulfur-Reducing Archaea ...................... 22
   3.4 CO-utilizing Acetogenic Bacteria ......................... 22
   3.5 CO-utilizing Methanogenic Archaea ....................... 23
   3.6 CO-utilizing Iron-Reducing Bacteria and Archaea .......... 26

4 Biotechnological Applications of Thermophilic Carboxydotrophs ..................................... 29
   4.1 Electricity Production from CO/Syngas-fed Microbial Fuel Cell ........................................... 31
      4.1.1 Overview of Microbial Fuel Cells (MFCs) ............... 31
      4.1.2 CO/Syngas as Substrates for Microbial Fuel Cells (MFCs) .................. 38
      4.1.3 Thermophilic Carboxydotrophs in CO/Syngas-fed Microbial Fuel Cells (MFCs) ............ 41
      4.1.4 Design Considerations of MFCs Operating at Thermophilic Temperatures ................... 48
   4.2 Biofuel and Organic Acid Production by Thermophilic Carboxydotrophs from Synthesis Gas (Syngas) Fermentation .... 50
      4.2.1 Microbiology of Carboxydotrophic Microorganisms Capable of Converting Syngas to Biofuels and Organic Acids .................................................. 57
4.2.2 Biochemistry of Syngas Fermentation .......................... 67
4.2.3 Products of Syngas Fermentation ............................... 72
4.2.4 Potential Improvements ......................................... 77
4.3 Bioremediation of Toxic Compounds with Thermophilic Carboxydophils ........................................... 81
  4.3.1 Reductive Dehalogenation of Trichloroethylene by Methanosarcina Thermophila .................. 83
  4.3.2 Reductive/Substitutive Dechlorination of Tetrachloromethane (CCl₄) by Clostridium Thermoaceticum and Methanobacterium Thermoautotrophicum ....................... 85
  4.3.3 Transformation of 2,4,6,-trinitrotoluene (TNT) by a Carboxydophilic Sulfate-reducing Anaerobe ...... 87
4.4 Thermophilic Carboxydophils as Biosensors for CO Detection .............................................................. 88
  4.4.1 Mediators .......................................................... 92
  4.4.2 Enzyme Electrodes ............................................... 92
  4.4.3 Gas Biosensors .................................................. 93
  4.4.4 Detection of CO from the Environment .................... 94

5 Conclusions .............................................................. 103

References .............................................................. 105
Thermophilic Carboxydotrophs and their Applications in Biotechnology
Tiquia-Arashiro, S.M.
2014, IX, 131 p. 35 illus., 13 illus. in color., Softcover
ISBN: 978-3-319-11872-7