Contents

1 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The Scientific Method</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Some Special Features of Earth as a Planet</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Some Special Features of Venus as a Planet</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
</tbody>
</table>

2 The Origin of the Sun and the Early Evolution of the Solar System

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 List of Some Important Facts to be Explained by a Successful Model</td>
<td>15</td>
</tr>
<tr>
<td>2.2 A Composite Working Model for Origin and Evolution of the Solar System</td>
<td>21</td>
</tr>
<tr>
<td>Summary</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>32</td>
</tr>
</tbody>
</table>

3 Models for the Origin and Evolution of the Earth-Moon System

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 List of Facts to be Explained by a Successful Model</td>
<td>36</td>
</tr>
<tr>
<td>3.2 Fission from the Earth Early in Earth History</td>
<td>36</td>
</tr>
<tr>
<td>3.3 Co-formation of the Earth and Moon from the Same Cloud of Dust and Gas</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Intact Capture of the Moon by the Earth (1952–1986)</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Other Recent Attempts at Intact Capture</td>
<td>39</td>
</tr>
<tr>
<td>3.6 Orbital Traceback Models Suggesting Intact Capture</td>
<td>41</td>
</tr>
<tr>
<td>3.7 More on the Singer (1968) Model of Prograde Capture</td>
<td>41</td>
</tr>
<tr>
<td>3.8 Disintegrative Capture Models</td>
<td>42</td>
</tr>
<tr>
<td>3.9 A Multiple-Small-Moon Model</td>
<td>42</td>
</tr>
<tr>
<td>3.10 A New (Post-Kona) View of the Intact Capture Process</td>
<td>43</td>
</tr>
<tr>
<td>3.11 Formation of the Moon Resulting from a Giant Impact Early in Earth History</td>
<td>46</td>
</tr>
<tr>
<td>3.11.1 The Angular Momentum Problem of the Earth-Moon System</td>
<td>46</td>
</tr>
<tr>
<td>3.11.2 The Oxygen Isotope Similarities Between Earth and Moon</td>
<td>47</td>
</tr>
<tr>
<td>3.11.3 The Mass and Density of the Moon</td>
<td>48</td>
</tr>
</tbody>
</table>
3.12 A Report Card for Models of Lunar Origin .. 48
References .. 49

4 A Prograde Gravitational Capture Model for the Origin
and Evolution of the Earth-Moon System .. 53

4.1 Place of Origin for Luna and Sibling Planetoids
and a Model for Magnetization of the Crust of Luna and Sibling Vulcanoid Planetoids 55

4.2 Migration History of Luna
and Sibling Vulcanoid Planetoids .. 60
4.2.1 Stability of Vulcanoid Planetoid Orbits .. 65
4.2.2 Transfer of Vulcanoid Planetoids from Orbits of Origin to Venus-Earth Space 66
4.2.3 Summary for the Transfer Scheme .. 66

4.3 Prograde Gravitational Capture of Luna and the
Subsequent Orbit Circularization: A Two-Body Analysis
and a Discussion of the Paradoxes Associated with the Capture Process 69

4.4 Numerical Simulations of Gravitational Capture
of a Lunar-Like Body by an Earth-Like Planet ... 78
4.4.1 Computer Code Information .. 79
4.4.2 Development of the Computer Code .. 79
4.4.3 A Sequence of Typical Orbital Encounter Scenarios
Leading to a Stable Capture Scenario .. 82
4.4.4 Geometry of Stable Capture Zones for Planetoids
Being Captured by Planets ... 86
4.4.5 The Post-Capture Orbit Circularization Calculation 91
4.4.6 A Qualitative Model for Generation of a Mare-Age
Lunar Magnetic Field .. 93
4.4.7 Subsequent Orbit Expansion due to Angular Momentum Exchange between the Rotating Earth
and the Lunar Orbit ... 98

4.5 Summary and Statement of the Fourth Paradox 100
4.6 Summary and Conclusions for the Chapter 101
Appendix .. 101
References .. 111

5 Some Critical Interpretations and Misinterpretations
of Lunar Features ... 117

5.1 Discussion of Some Speculations of Harold Urey
and Zdenek Kopal .. 117

5.2 Vignette A. Critique of the “Commandments”
for Interpretation of Lunar Surface Features ... 118
5.2.1 Purpose .. 119
5.2.2 Dedication of this Section of the Chapter 119
5.2.3 The Scientific Method and its Application
to this Particular Problem ... 119

5.2.3.1 Step A: Some Facts to be Explained by a
Successful Hypothesis for the Origin of
Certain Lunar Features ... 120

5.2.3.2 Step B: The Hypothesis to be Tested:
Tidal Disruption on the 18th Perigee
Passage of a Stable Capture Scenario 122

5.2.3.3 STEP C: Critique of the “Commandments”
as a Prelude to Testing of the Hypothesis 134

5.2.3.4 STEP D: Some Testable Predictions
for the Model .. 139

5.2.4 Summary and Conclusions .. 147

5.3 Vignette B. Directional Properties of “Circular” Lunar
Maria and Related Structures: Interpretation in the Context
of a Testable Gravitational Capture Model for Lunar Origin..... 147

5.3.1 Purpose .. 148

5.3.2 A Cursory Survey of Circular Maria and Some
Mare-filled Craters .. 150

5.3.3 Summary of Observations ... 150

5.3.4 Examination of Models that can be Tested
for an Explanation of the Directional Properties
of the Circular Maria .. 151

5.3.4.1 The Random Impact Model (Wilhelms 1987) 152

5.3.4.2 Tidal Disruption of a Passing Body Model
(Hartmann 1977a) ... 155

5.3.4.3 Impact of a Swarm of Bodies Due to a
Tidally Disruptive Encounter with Either
Venus or Earth (Wetherill 1981) 161

5.3.4.4 Impact of a Swarm of Bodies from the
Asteroid Zone (Nash 1963) .. 161

5.3.4.5 Impact of Lunar Satellites Model
(Runcorn 1983; Conway 1986) 161

5.3.4.6 Tidal Disruption of the Lunar Body and
Subsequent Fallback Model During a
Close Encounter with Earth
(Malcuit et al. 1975) ... 162

5.3.5 Some Testable Features of a Tidal Disruption
Scenario That can be Analyzed on Future Mission
to the Moon .. 163

5.3.6 Major Predictions from the Tidal Disruption Model
for the Formation of Some Lunar Features 169

5.3.7 Discussion of the Predictions 169

5.3.8 An Epilogue to This Section on “Directional
Properties of Lunar Maria” .. 173
5.4 Vignette C. On the Origin of Lunar Maria and Mascons: The Case for a One-body, Isostatic Equilibrium
Model Revisited ... 174
5.4.1 Purpose ... 174
5.4.2 Some Special Features of Large Circular Maria
and Associated Mascons .. 175
5.4.3 Some Previously Proposed Models for Mascons 175
5.4.4 A Soft-Body Impact Model for Mascons 177
5.4.5 Some Predictions from the Soft-Body Model
for the Formation of Circular Maria and Mascons 178
5.4.6 Summary .. 179

5.5 Vignette D. The Late Heavy Bombardment of Earth,
Moon, and Other Bodies: Fact or Fiction? 179
5.5.1 Purpose ... 180
5.5.2 Some Facts to be Explained and Questions
to be Answered by a Successful Model 180
5.5.3 A Series of Quotes, Mainly in Chronological Order,
Concerning Unusual Events on the Moon (and
Earth) Between 4.0 and 3.5 Billion Years Ago 180
5.5.4 Some Quotes on the Concept of the “LATE
HEAVY BOMBARDMENT” from 1974 up to 2007 182
5.5.5 View of the Late Heavy Bombardment in 2006 185
5.5.6 Review of the Situation of the Late Heavy
Bombardment in 2007 ... 185
5.5.7 Summary .. 186

5.6 Vignette E. A Cool Early Earth, Recycled Enriched Crust
at ~3.95 Ga, and the Subduction Mechanisms Associated
with a Tidal Capture Model for the Origin of the Earth-
Moon System .. 187
5.6.1 Purpose ... 187
5.6.2 Evidence for a Cool Early Earth 188
5.6.3 The Bedard (2006) Model for Processing
a Basaltic Crust on a Stagnant-Lid Planet 188
5.6.4 A Unidirectional Earth-Tide Recycling Mechanism
Commencing with the Capture Encounter at ~3.95 Ga 189
5.6.5 A Proposed Mechanism for Recycling an Enriched
Primitive Crust in the Broadly Defined Equatorial
Zone of the Planet Beginning ~3.95 Ga 190
5.6.6 Summary ... 200
5.6.7 Discussion ... 202

5.7 Vignette F. On the Origin of Earth’s Oceans of Water 206
5.7.1 Some Facts to be Explained by a Successful Model
for the Origin of Water on Earth and Neighboring Planets ... 207
5.7.2 The Asteroidal Source of Water as Proposed
by Albarede (2009) .. 208
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.3 A Proposed Delivery Mechanism for the Water-Bearing Asteroids</td>
<td>210</td>
</tr>
<tr>
<td>5.7.4 Summary and Conclusions</td>
<td>211</td>
</tr>
<tr>
<td>5.7.5 Discussion</td>
<td>212</td>
</tr>
<tr>
<td>5.8 Discussion of the Speculations by Harold Urey and Zdenek Kopal...</td>
<td>215</td>
</tr>
<tr>
<td>5.9 Summary Statement</td>
<td>217</td>
</tr>
<tr>
<td>Appendix</td>
<td>218</td>
</tr>
<tr>
<td>The “Cool Early Earth” Vignette (Sect. 5.6.)</td>
<td>218</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
<tr>
<td>Lunar Geologic Maps Cited</td>
<td>234</td>
</tr>
<tr>
<td>Lunar Charts Cited</td>
<td>234</td>
</tr>
</tbody>
</table>

6 Origin and Evolution of the Venus-Adonis System:

A Retrograde Gravitational Capture Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Origin of the Concept of Retrograde Capture of a Lunar-Like Body by Planet Venus</td>
<td>236</td>
</tr>
<tr>
<td>6.2 Some Facts to be Explained by a Successful Model</td>
<td>237</td>
</tr>
<tr>
<td>6.3 Place of Origin of Adonis and Sibling Planetoids and the Original Rotation Rate of Planet Venus</td>
<td>237</td>
</tr>
<tr>
<td>6.4 Migration History of Adonis and Sibling Planetoids</td>
<td>238</td>
</tr>
<tr>
<td>6.5 Gravitational Capture of Adonis and the Subsequent Orbit Circularization—A Two-Body Analysis</td>
<td>238</td>
</tr>
<tr>
<td>6.5.1 Retrograde Capture of a 0.5 Moon-Mass Planetoid from a Co-Planar, Venus-Like Orbit</td>
<td>238</td>
</tr>
<tr>
<td>6.5.2 Post-Capture Orbit Circularization Era</td>
<td>242</td>
</tr>
<tr>
<td>6.5.3 Circular Orbit Evolution</td>
<td>243</td>
</tr>
<tr>
<td>6.6 Numerical Simulations of Retrograde Planetoid Capture for Venus and a 0.5 Moon-Mass Planetoid</td>
<td>243</td>
</tr>
<tr>
<td>6.6.1 Coordinate System for Plotting the Results</td>
<td>244</td>
</tr>
<tr>
<td>6.6.2 A Sequence of Orbital Encounter Scenarios Leading to Stable Retrograde Capture</td>
<td>245</td>
</tr>
<tr>
<td>6.6.3 Post-Capture Orbit Circularization Era</td>
<td>252</td>
</tr>
<tr>
<td>6.6.4 Sequence of Diagrams Showing the Possible Surface and Interior Effects on Planet Venus for Retrograde Capture of Adonis and Subsequent Orbit Circularization</td>
<td>256</td>
</tr>
<tr>
<td>6.6.5 Diagrams Showing Possible Surface Effects During the Circular Orbit Era</td>
<td>257</td>
</tr>
<tr>
<td>6.6.6 Summary and Commentary on Conditions during this 3.0 Billion Year Era</td>
<td>259</td>
</tr>
<tr>
<td>6.6.7 A Model for the Final Demise of Adonis from the Roche Limit for a Solid Body to Breakup in Orbit and Eventual Coalescense with Planet Venus</td>
<td>264</td>
</tr>
<tr>
<td>6.7 Summary for the Chapter</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>268</td>
</tr>
</tbody>
</table>
7 A Retrograde Gravitational Capture Model for the Earth-Moon System ... 271
7.1 Purpose .. 272
7.2 Overview of a Retrograde Capture Scenario for Earth: A Two-Body Analysis .. 272
7.3 Numerical Simulations of Retrograde Planetoid Capture for Earth and a Moon-Mass Planetoid and the Subsequent Circularization of the Post-Capture Orbit .. 274
7.4 Circular Orbit Era ... 285
7.5 Late Phase of the Circular Orbit Evolution Era .. 288
7.6 Summary for the Retrograde Capture and Subsequent Orbital Evolution of an Earth-Like Planet and a Lunar-Mass Satellite System ... 289
7.7 Discussion and Implications for the Search for Habitable Exoplanets .. 291
References .. 293

8 Planet Orbit—Lunar Orbit Resonances and the History of the Earth-Moon System ... 295
8.1 Purpose .. 296
8.2 The Perigean Cycle for the Earth-Moon System .. 296
8.3 A Jupiter Orbit—Lunar Orbit Resonance ... 298
 8.3.1 Geometry of a Jupiter Orbit—Lunar Orbit Resonance ... 299
 8.3.2 Orbital Geometry and Tidal Regime for a Forced Eccentricity Scenario 301
 8.3.3 Some Testable Predictions from this Forced Eccentricity Scenario .. 308
 8.3.4 Summary and Discussion ... 309
8.4 A Venus Orbit—Lunar Orbit Resonance Associated with a Perigean Cycle of 15 Earth Years (24 Venus Years) (A 15:1 VO-LO Resonance) .. 310
 8.4.1 Geometry of a Venus Orbit—Lunar Orbit Resonance when the Perigean Cycle is at 15 Earth Years (24 Venus Years) ... 312
 8.4.2 Tidal Regime of this Venus Orbit—Lunar Orbit Resonance ... 312
 8.4.3 Some Testable Predictions from this Forced Eccentricity Scenario .. 314
 8.4.4 Summary and Discussion ... 322
8.5 A Venus Orbit—Lunar Orbit Resonance Associated with a Perigean Cycle of 10 Earth Years (16 Venus Years) (A 10:1 VO-LO Resonance) .. 322
 8.5.1 A Note on the Proposed Time Scale for Planet Orbit—Lunar Orbit Resonances 323
Contents

8.5.2 Geometry of a Venus Orbit—Lunar Orbit Resonance when the Perigean Cycle is at 10 Earth Years (16 Venus Years) (a 10:1 VO-LO resonance) 324
8.5.3 Snapshots of Four Orbit States and the Associated Tidal Regimes ... 326
8.5.4 Some Testable Predictions from this Model 326
8.5.5 Summary and Discussion ... 326
8.6 A Venus Orbit—Lunar Orbit Resonance Associated with a Perigean Cycle of 5 Earth Years (8 Venus Years) 333
8.6.1 Geometry and Tidal Regime of a Venus Orbit—Lunar Orbit Resonance when the Perigean Cycle is at 5 Earth Years (8 Venus Years) (A 5:1 VO-LO resonance) ... 333
8.6.2 Summary and Discussion for this Section 333
8.7 Summary and Conclusions for this Chapter 341
8.8 A Soliloquy on this Chapter ... 342
Appendix ... 344
References .. 352

9 Discussion of the Probability of Finding Habitable Planets for Humans Orbiting Sun-Like Stars .. 355
9.1 How Simple or How Complicated is the System of Biology on Earth? .. 356
9.2 My Suggested List of Additional Factors (Models) That Should be Considered in the Development of Higher Forms of Life on Earth ... 357
9.3 The Long Chain of Complications For Explaining Our Existence on the Third Planet From the Sun ... 360
9.4 What are the Chances of this Very Long Chain of Complications Happening Elsewhere in a Large Region of Space? ... 362
9.5 Summary .. 363
References .. 363

10 Summary and Conclusions .. 365
References .. 367

Glossary ... 369

Author Index ... 393

Subject Index ... 397
The Twin Sister Planets Venus and Earth
Why are they so different?
Malcuit, R.
2015, XIX, 401 p. 225 illus., 68 illus. in color., Hardcover
ISBN: 978-3-319-11387-6