Contents

1 Introduction .. 1
 1.1 Background. .. 1
 1.2 Aim and Structure of the Study 2

 2.1 General Aims of Energy Systems 5
 2.2 Conceptual Role of Security and Safety for Energy Systems 7
 2.3 Robustness as a Basic Aim for Energy System Development 8
 2.3.1 Dynamic Stability 9
 2.3.2 Social Robustness 13
 2.4 Means for Tackling Complex Social Choices 14
 2.4.1 Safe and Secure Energy Supply Through System Examination 14
 2.4.2 Ethical Decision Support for Energy Transition 23
 2.5 Summary and Conclusions 33

3 Prospects and Limits of Scientific Policy Advice for Future Energy Systems 35
 3.1 Specific Challenges in Scientific Policy Advice 36
 3.1.1 Academic Research and Scientific Expertise 36
 3.1.2 Epistemic Values Involved in Expert Advice 38
 3.1.3 Non-epistemic Values Involved in Expert Advice 42
 3.2 Dealing with Risks, Uncertainty, and Ignorance in Expert Advice 46
 3.2.1 Knowledge Deficits in Expert Advice 46
 3.2.2 Using Non-epistemic Freedom to Fit Expert Advice to the Purpose 49
 3.3 The Social Aspects of the Concept of Risk 52
 3.4 Typical Characteristics of Uncertainty and the Precautionary Principle 55
3.4.1 Dimensions of Scientific Uncertainty 55
3.4.2 Post-normal Science 57
3.4.3 The Precautionary Principle 59
3.5 Summary and Conclusions 65

4 Characterisation of Recent Energy System Analyses 69
 4.1 Characterisation Schemes for System Analyses 70
 4.1.1 From System Correlations to Analyses 70
 4.1.2 Derived Tools for Meta-analysis of Studies 76
 4.2 General Coverage and Actors of Currently Existing System Analyses 83
 4.2.1 Research Themes 84
 4.2.2 Institutions and Disciplines Involved 85
 4.2.3 Conclusions 92
 4.3 Examples of System Analyses Consulted for Specific Questions .. 95
 4.3.1 Official Scenarios for Analysing Germany’s Future Energy System 96
 4.3.2 Analyses for Deriving Estimates of Balancing and Energy Storage Requirements 105
 4.3.3 Analyses with regard to Non-technical Parts and Framework Conditions 131
 4.4 Summary and Conclusions 138

5 Specific Economic Problems and Uncertainties in the Context of Energy Systems 141
 5.1 Some Problems of Sustainable Energy Policy 142
 5.2 On Discounting: (Un-)Certainty, Time Trends and Generations ... 151
 5.2.1 Theory of Discounting Under Certainty 151
 5.2.2 A Theory of Discounting Under Uncertainty . 152
 5.2.3 Empirics 154
 5.2.4 Policy 155
 5.3 Oil Price Trends or Random Walk? 158
 5.3.1 The Growth of Oil Prices from a GARCH Perspective .. 161
 5.3.2 Is Two-Way Causality a Way Out? A Vector-Error Correction Perspective 163
 5.4 The Impact of the EU-ETS on the Prices of Emission Certificates and Electricity 166
 5.4.1 CO₂ Cost Pass-Through Under Perfect Competition in Retail Markets 166
 5.4.2 CO₂ Cost Pass-Through under Imperfect Competition in Retail Markets 167
5.4.3 Capacity and Uncertainty: Profits in the Wholesale Market .. 168
5.4.4 Empirics: Profit Maximisation and Functional Forms of Price Elasticity Estimates 169
5.4.5 Improving the Empirics of Sluggish Consumer Behaviour 170
5.4.6 The Impact of Carbon Prices on Electricity Prices .. 171
5.5 Summary and Conclusions ... 174

6 Energy System 2050: Impacts of Uncertainties on the Optimal Electricity Generation Mix 175
6.1 Focus of the Analysis: Future Electricity Generation ... 175
6.2 Energy System 2050: Optimal Electricity Generation Mix? .. 177
 6.2.1 Methodology ... 177
 6.2.2 Application Case Study .. 179
 6.2.3 Reference Scenario ... 181
 6.2.4 Sensitivity Analyses ... 183
6.3 Summary and Conclusions ... 186

7 Political Challenges in Managing Transitions of Energy Systems Beyond Pure Energy-Economic Modelling ... 187
7.1 Implications from System Analyses for Governance and Policy Instruments 187
 7.1.1 General Considerations ... 187
 7.1.2 Operational Incentives and Co-ordination ... 189
 7.1.3 Investment Incentives and Co-ordination ... 190
 7.1.4 Regulatory Settings and Co-ordination of Expectations 191
7.2 Multi-level Governance and Europe’s Energy Transition .. 192
 7.2.1 Energy Transition from a European Perspective 192
 7.2.2 The German Energy Transition ... 202
 7.2.3 Challenges to Effective Action ... 204
7.3 Summary and Conclusions ... 205

8 Conclusions and Recommendations ... 207
8.1 Reflections on Improving Scientific Policy Advice for Future Energy Systems 207
8.2 Recommendations ... 212
 8.2.1 General Aims of Scientific Policy Advice .. 212
 8.2.2 Dealing with Uncertainty .. 213
 8.2.3 Practical Implications for the Design of Energy System Studies 214
 8.2.4 Beyond Pure Techno-Economic Analyses .. 215
Appendix A ... 217
Appendix B ... 225
Appendix C ... 227
Glossary .. 231
References .. 237
List of Authors ... 251

Further volumes of the series *Ethics of Science and Technology Assessment* (Wissenschaftsethik und Technikfolgenbeurteilung) 255
Improving Energy Decisions
Towards Better Scientific Policy Advice for a Safe and Secure Future Energy System
2015, XLIII, 257 p. 31 illus., 12 illus. in color., Hardcover
ISBN: 978-3-319-11345-6