Preface for the Instructor xi
Preface for the Student xv
Acknowledgments xvii
1 Vector Spaces 1
 1.A R^n and C^n 2
 Complex Numbers 2
 Lists 5
 F^n 6
 Digression on Fields 10
 Exercises 1.A 11
 1.B Definition of Vector Space 12
 Exercises 1.B 17
 1.C Subspaces 18
 Sums of Subspaces 20
 Direct Sums 21
 Exercises 1.C 24
2 Finite-Dimensional Vector Spaces 27
 2.A Span and Linear Independence 28
 Linear Combinations and Span 28
 Linear Independence 32
 Exercises 2.A 37
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.B</td>
<td>Bases</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Exercises 2.B</td>
<td>43</td>
</tr>
<tr>
<td>2.C</td>
<td>Dimension</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Exercises 2.C</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>Linear Maps</td>
<td>51</td>
</tr>
<tr>
<td>3.A</td>
<td>The Vector Space of Linear Maps</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Definition and Examples of Linear Maps</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Algebraic Operations on $\mathcal{L}(V,W)$</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Exercises 3.A</td>
<td>57</td>
</tr>
<tr>
<td>3.B</td>
<td>Null Spaces and Ranges</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Null Space and Injectivity</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Range and Surjectivity</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Fundamental Theorem of Linear Maps</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Exercises 3.B</td>
<td>67</td>
</tr>
<tr>
<td>3.C</td>
<td>Matrices</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Representing a Linear Map by a Matrix</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Addition and Scalar Multiplication of Matrices</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Matrix Multiplication</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Exercises 3.C</td>
<td>78</td>
</tr>
<tr>
<td>3.D</td>
<td>Invertibility and Isomorphic Vector Spaces</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Invertible Linear Maps</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Isomorphic Vector Spaces</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Linear Maps Thought of as Matrix Multiplication</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Operators</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Exercises 3.D</td>
<td>88</td>
</tr>
<tr>
<td>3.E</td>
<td>Products and Quotients of Vector Spaces</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Products of Vector Spaces</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Products and Direct Sums</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Quotients of Vector Spaces</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Exercises 3.E</td>
<td>98</td>
</tr>
</tbody>
</table>
3.F Duality 101
 The Dual Space and the Dual Map 101
 The Null Space and Range of the Dual of a Linear Map 104
 The Matrix of the Dual of a Linear Map 109
 The Rank of a Matrix 111
 Exercises 3.F 113

4 Polynomials 117
 Complex Conjugate and Absolute Value 118
 Uniqueness of Coefficients for Polynomials 120
 The Division Algorithm for Polynomials 121
 Zeros of Polynomials 122
 Factorization of Polynomials over C 123
 Factorization of Polynomials over R 126
 Exercises 4 129

5 Eigenvalues, Eigenvectors, and Invariant Subspaces 131
 5.A Invariant Subspaces 132
 Eigenvalues and Eigenvectors 133
 Restriction and Quotient Operators 137
 Exercises 5.A 138
 5.B Eigenvectors and Upper-Triangular Matrices 143
 Polynomials Applied to Operators 143
 Existence of Eigenvalues 145
 Upper-Triangular Matrices 146
 Exercises 5.B 153
 5.C Eigenspaces and Diagonal Matrices 155
 Exercises 5.C 160

6 Inner Product Spaces 163
 6.A Inner Products and Norms 164
 Inner Products 164
 Norms 168
 Exercises 6.A 175
6.B Orthonormal Bases 180
 Linear Functionals on Inner Product Spaces 187
 Exercises 6.B 189

6.C Orthogonal Complements and Minimization Problems 193
 Orthogonal Complements 193
 Minimization Problems 198
 Exercises 6.C 201

7 Operators on Inner Product Spaces 203

7.A Self-Adjoint and Normal Operators 204
 Adjoints 204
 Self-Adjoint Operators 209
 Normal Operators 212
 Exercises 7.A 214

7.B The Spectral Theorem 217
 The Complex Spectral Theorem 217
 The Real Spectral Theorem 219
 Exercises 7.B 223

7.C Positive Operators and Isometries 225
 Positive Operators 225
 Isometries 228
 Exercises 7.C 231

7.D Polar Decomposition and Singular Value Decomposition 233
 Polar Decomposition 233
 Singular Value Decomposition 236
 Exercises 7.D 238

8 Operators on Complex Vector Spaces 241

8.A Generalized Eigenvectors and Nilpotent Operators 242
 Null Spaces of Powers of an Operator 242
 Generalized Eigenvectors 244
 Nilpotent Operators 248
 Exercises 8.A 249
8.B Decomposition of an Operator 252
 Description of Operators on Complex Vector Spaces 252
 Multiplicity of an Eigenvalue 254
 Block Diagonal Matrices 255
 Square Roots 258
 Exercises 8.B 259

8.C Characteristic and Minimal Polynomials 261
 The Cayley–Hamilton Theorem 261
 The Minimal Polynomial 262
 Exercises 8.C 267

8.D Jordan Form 270
 Exercises 8.D 274

9 Operators on Real Vector Spaces 275

9.A Complexification 276
 Complexification of a Vector Space 276
 Complexification of an Operator 277
 The Minimal Polynomial of the Complexification 279
 Eigenvalues of the Complexification 280
 Characteristic Polynomial of the Complexification 283
 Exercises 9.A 285

9.B Operators on Real Inner Product Spaces 287
 Normal Operators on Real Inner Product Spaces 287
 Isometries on Real Inner Product Spaces 292
 Exercises 9.B 294

10 Trace and Determinant 295

10.A Trace 296
 Change of Basis 296
 Trace: A Connection Between Operators and Matrices 299
 Exercises 10.A 304
10.B Determinant 307
 Determinant of an Operator 307
 Determinant of a Matrix 309
 The Sign of the Determinant 320
 Volume 323
 Exercises 10.B 330

Photo Credits 333

Symbol Index 335

Index 337