Contents

1 Introduction ... 1

Part I Processes in Gas Discharge Plasma

2 Properties of Gas Discharge Plasma 13
 2.1 Equilibria and Distributions of Particles in Gases and Plasmas ... 13
 2.2 Basic Plasma Parameters ... 17
 2.3 Transport Coefficients .. 19
 2.4 Ionization Equilibrium in Gas Discharge Plasma 20
 2.5 Thermoemission of Electrons from the Cathode 23
 2.6 Parameters of Helium and Argon Atoms and Ions 25

3 Elementary Processes in Gas Discharge Plasma 31
 3.1 Elastic Collisions of Classical Atomic Particles 31
 3.2 Elastic Electron-Atom Scattering in Slow Collisions 34
 3.3 Inelastic Electron Collisions with Atoms 40
 3.4 Resonant Atom Transitions in Collisions with Electrons 43
 3.5 Transitions Between Neighboring Atom States in Collisions With Electrons 47
 3.6 Atom Ionization by Electron Impact 50
 3.7 Recombination of Electrons and Ions in Plasma 58
 3.8 Three Body Processes and Stepwise Ionization of Atoms 59
 3.9 Collision Processes Involving Ions 62

4 Radiative Processes in Gas Discharge Plasma 65
 4.1 Radiative Transitions in Atoms 65
 4.2 Photoionization and Photorecombination Process 67
 4.3 Broadening of Spectral Lines 69
4.4 Cross Section and Absorption Coefficient for Resonant Photons .. 75
4.5 Propagation of Resonant Radiation in the Gas 79
4.6 Resonant Radiation in Excited Helium and Argon 84
4.7 Block Model for Atom Levels 88

<table>
<thead>
<tr>
<th>Part II Kinetics and Transport Phenomena in Gas Discharge Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Collision Processes in Kinetics of Gas Discharge Plasma 93</td>
</tr>
<tr>
<td>5.1 Kinetic Equation for Charged Particles 93</td>
</tr>
<tr>
<td>5.2 Integral Relations for an Average Momentum and Energy of a Charged Particle in Gas in Electric Field 95</td>
</tr>
<tr>
<td>5.3 Integral of Electron-Atom Collisions 99</td>
</tr>
<tr>
<td>5.4 Landau Collision Integral 101</td>
</tr>
<tr>
<td>5.5 Kinetics of Fast Electrons in Plasma 105</td>
</tr>
<tr>
<td>5.6 Electron Regimes in Gas Discharge Plasma 110</td>
</tr>
</tbody>
</table>

| 6 Kinetic Processes in Gas Discharge Plasma 113 |
| 6.1 Distribution Function of Electrons Located in Rareness Gas in Electric Field 113 |
| 6.2 Regime of High Electron Density in Electron Kinetics 120 |
| 6.3 Atom Excitation as Electron Diffusion in Energy Space 125 |
| 6.4 Efficiency of Atom Excitation by Electron Impact 130 |
| 6.5 Electron Distribution Function Above the Atom Excitation Threshold ... 134 |
| 6.6 Electron Kinetics in Gas in Strong Field 141 |

| 7 Transport Processes in Gas Discharge Plasma 151 |
| 7.1 Transport Phenomena in Gases 151 |
| 7.2 Electron Drift in Gas in External Electric Field 156 |
| 7.3 Electrons in Gas of Hard Spheres 164 |
| 7.4 Conductivity of Weakly Ionized Gas 170 |
| 7.5 Electron Thermal Conductivity of Helium Arc Plasma 173 |
| 7.6 Ion Drift and Diffusion in Gas in External Electric Field 176 |
| 7.7 Ambipolar Diffusion of Plasma in Gas in Electric Field 184 |
| 7.8 Heat Processes in Gas Discharge Plasma 191 |
| 7.9 Plasma Transport in Magnetic Field 193 |
Part III Processes in Gas Discharge

8 Ionization Equilibrium in Gas Discharge Plasma

8.1 Townsend Scheme for Self-maintaining of Gas Discharge

8.2 Ionization Equilibrium in Positive Column of Gas Discharge

8.3 Stepwise Ionization of Atoms in Positive Column

8.4 Plasma of Positive Column of Low Pressure Gas Discharge

8.5 Heat Processes in Positive Column of Gas Discharge

8.6 Local Thermodynamic Equilibrium in Arc Plasma of High Pressure

8.7 Ionization Equilibrium in Arc Plasma of High Pressure

9 Cathode and Wall Processes

9.1 Electric Breakdown of Gases

9.2 Electron Emission from Cathode in Ion Collisions

9.3 Properties of Cathode Region of Glow Discharge

9.4 Transition from Glow Discharge to Arc and Townsend Discharges

9.5 Plasma Sheath at Walls

9.6 Principles of Magnetron Discharge

Part IV Helium and Argon Gas Discharge Plasmas

10 Atom Excitation in Helium and Argon Uniform Plasma

10.1 Excitation of Metastable State in Helium Plasma at Low Electron Concentrations

10.2 Excitation of Metastable State in Helium Plasma at High Electron Concentrations

10.3 Inelastic Electron Collisions with Excited Helium Atoms

10.4 Excitation of Atoms in Argon Gas Discharge Plasma

10.5 Continuous Spectrum of Radiation of Equilibrium Plasma

10.6 Tail of the Energy Distribution Function of Electrons

11 Ionization in Helium and Argon Gas Discharge Plasma

11.1 Single Ionization of Atoms in Helium Gas Discharge Plasma

11.2 Stepwise Ionization of Atoms in Helium Gas Discharge Plasma

11.3 Single and Stepwise Ionization of Atoms in Argon Gas Discharge Plasma
11.4 Thermodynamic of Stepwise Ionization in Gas Discharge Plasma ... 307
11.5 Ionization in Argon Gas Discharge Plasma Involving Excited Atoms ... 311

12 Helium and Argon Plasma in Positive Column of Gas Discharge .. 315
12.1 Schottky Regime for Ionization Equilibrium in Positive Column .. 315
12.2 Stepwise Ionization in Helium Positive Column .. 321
12.3 Ionization in Argon Gas Discharge Plasma of Positive Column .. 331
12.4 Hot Gas Discharge Plasma of Positive Column .. 338
12.5 Capillary Discharge .. 347

13 Processes at Boundaries of Gas Discharge Plasma .. 357
13.1 Cathode Plasma of Glow Discharge Near Equilibrium ... 357
13.2 Cathode Layer of Abnormal Glow Discharge ... 364
13.3 Transition Region in Glow Discharge ... 368
13.4 The Wall Plasma Sheath for Positive Column in Helium and Argon .. 370
13.5 Magnetron Plasma in Helium and Argon .. 376

14 Principles of Gas Discharge Plasma ... 387
14.1 Gas Discharge Plasma as Complex Physical Object ... 387
14.2 Self-consistent Character of Processes Involving Excited Atom States ... 390
14.3 Regimes of Gas Discharge Plasma .. 395
14.4 Conclusion ... 398

Appendix .. 399

References ... 409

Index .. 421
Theory of Gas Discharge Plasma
Smirnov, B.M.
2015, X, 423 p. 196 illus., Hardcover
ISBN: 978-3-319-11064-6