### 3.3 Projected Costs: Ultra Violet, Micro Filtration—Ultra Filtration (MF-UF), High Rate Treatment and Clarification (HRC), and Ozonation

### 3.4 Class 5 Treatment Technologies

### 3.5 Reverse Osmosis and Nanofiltration (Class 6)

### 3.6 Examples of Actual Costs of a Few Existing Plants

### 3.7 Summing up and Tentative Conclusions

### References

---

### 4 Reverse Osmosis and Other Treatment Technologies

#### 4.1 Introduction

#### 4.2 Water Desalination Technology in Application

#### 4.3 Desalination Processes

- **4.3.1** Reverse Osmosis
- **4.3.2** Distillation
- **4.3.3** Electrodialysis
- **4.3.4** Ion Exchange
- **4.3.5** Freeze Desalination

#### 4.4 Relative Costs of Desalination Technologies

- **4.4.1** Feed-Water Salinity Level
- **4.4.2** Energy Requirements
- **4.4.3** Economies of Scale

#### 4.5 Conclusion

### References

---

### 5 The Theory of Water and Utility Pricing

#### 5.1 Introduction

#### 5.2 The Dupuit-Hotelling Theory of Marginal Cost Pricing

- **5.2.1** The Derivation of the Marginal Cost Pricing Rule

#### 5.3 Private Versus Public Production

#### 5.4 Absolute Efficiency Advantage

#### 5.5 Second-Best (Ramsey) Pricing

- **5.5.1** Derivation of Ramsey Prices
- **5.5.2** Ramsey Pricing Expressed as Covering Capital Costs
- **5.5.3** Ramsey Pricing and Equity Issues

#### 5.6 Econometric Estimation of Shadow Ramsey Prices

- **5.6.1** Derivation of MC for Two Types of Desalination
- **5.6.2** Derivation of Shadow Ramsey Prices and Breakeven Prices

#### 5.7 Water Pricing in Developed Countries

- **5.7.1** Water Pricing Practice in the US
- **5.7.2** Water Pricing Practice in the European Union
- **5.7.3** Water Pricing Practice in Australia

### References
### Part III Incorporating Risk in Decision-Making

#### 6 Risk Assessment for Safe Drinking Water Supplies
6.1 Introduction ........................................ 117
6.2 Source Water Protection ............................ 118
   6.2.1 Principles of Watershed Management ........ 118
   6.2.2 Source Water Pollution Control Measures ... 119
6.3 Risk Management Methods for Producing Potable Water Supplies ...................... 123
   6.3.1 Hazard Analysis and Critical Control Point Protocol .................. 123
   6.3.2 The World Health Organization Water Safety Plan ... 125
   6.3.3 The Bonn Charter ................................ 128
   6.3.4 Quantitative Microbial Risk Assessment .......... 129
   6.3.5 Risk Assessment Application to Water Treatment Plants .................. 136
6.4 Case Studies of Risk Assessment .................... 137
   6.4.1 Bangladesh ..................................... 138
   6.4.2 Uganda ........................................ 140
   6.4.3 Iceland ......................................... 141
   6.4.4 Australia ...................................... 143
6.5 Conclusions ........................................ 148
References ........................................... 150

#### 7 Introduction to Water Infrastructure Asset Management
7.1 Introduction ........................................ 153
   7.1.1 Infrastructure Management in Canada .......... 154
   7.1.2 Case Study 1, Capital Regional District of British Columbia .................. 156
   7.1.3 Case Study 2, Asset Management in Australia .... 157
7.2 Incorporating Risk in Water Infrastructure Management ......................... 159
   7.2.1 Introduction ................................... 159
   7.2.2 Risk Considerations ............................ 160
   7.2.3 Redundancy ..................................... 164
7.3 Risk Assessment ...................................... 167
7.4 Decision Support System (DSS) Incorporating Risk ............................. 168
   7.4.1 Introduction ................................... 168
   7.4.2 The Decision Support System .................... 168
   7.4.3 Incorporation of Risk into the DSS ................ 171
8 Computing a Model for Asset Management with Risk

8.1 Introduction ........................................ 175
8.2 Towards Solving the DSS .................................. 177
8.3 Application of Risk into the DSS ............................ 177
8.3.1 A Numerical Solution .............................. 178
8.3.2 A Graphical Solution .............................. 179
8.4 Case Studies from British Columbia ...................... 180
8.4.1 Introduction ..................................... 180
8.4.2 City A ........................................ 181
8.4.3 City B ........................................ 185
8.4.4 City C ........................................ 188
8.5 Conclusion ........................................ 195

9 Threats to Human Health: Use of Chlorine, an Obsolete Treatment Technology

9.1 Introduction ........................................ 197
9.2 Long-Term Health Effects of Using Chlorine ............. 198
9.2.1 Chlorinated DBPs Exposure with Cancer Incidence ... 198
9.2.2 Effects on Preterm Births and Health Defects in the Unborn Child .......................... 203
9.2.3 Changes in Blood Levels ............................ 204
9.2.4 Contribution of DBPs to the Estrogenic Effects in Drinking Water ......................... 205
9.3 Management Practices in Developed Countries ............. 206
9.4 Conclusion ........................................ 208
References ................................................ 209


10.1 Introduction ........................................ 213
10.2 Adverse Health Risks and Social Costs Associated with Lead in Drinking Water ............. 214
10.2.1 Amount of Lead in Blood .......................... 214
10.2.2 Health Effects of Lead in Blood .................... 217
10.2.3 Social Costs of Lead in Drinking Water ............ 218
10.3 The Canadian Federal Guidelines for a Protocol for Sampling Drinking Water ................ 220
10.3.1 Stagnation Time and Sampling Protocols .......... 220
10.3.2 Canadian Federal Guidelines for Lead Sampling Protocols ....................... 220
10.3.3 The Ontario Lead Sampling Protocol .............. 222
10.3.4 The 1999 EU Report ................................ 222
10.4 A Critique of the EU 1999 Report ................................. 224
10.5 The EPA Sampling Protocol ........................................... 230
10.6 Conclusion ............................................................... 233
References .................................................................... 234

11 Confronting the Problem of Lead in Drinking Water:
What Can and Should Be Done ................................................. 239
11.1 Introduction ................................................................. 239
11.2 Lead in Denmark .......................................................... 239
11.3 What the Regulatory Maximum Level of Lead Should Be in Ontario .................................................. 242
11.3.1 Overview ................................................................. 242
11.3.2 The Estimation of Lead ............................................... 243
11.3.3 The Simulation of Lead Samples ................................. 247
11.3.4 Simulating the Lower MCL for Lead for Ontario ........ 250
11.4 Some Caveats and Limitations ......................................... 251
References .................................................................... 255

Part IV A European Case Study

12 Drinking Water in Germany: A Case Study of High Quality Drinking Water ................................................. 259
12.1 Introduction ................................................................. 259
12.2 Drinking Water Supply ................................................... 260
12.2.1 Introduction to Drinking Water Utilities in Germany .................................................. 260
12.2.2 Groundwater and Surface Water Bodies in Germany .................................................. 261
12.2.3 Security of Supply ...................................................... 262
12.3 Water Consumption in Germany ..................................... 263
12.4 Development of Wastewater Treatment in Germany ........ 264
12.4.1 The History of Wastewater Treatment in Germany .................................................. 264
12.4.2 Current Wastewater Treatment in Germany ................ 265
12.5 Micropollutants in Three Countries ................................. 268
12.5.1 Micropollutants in the Netherlands ............................. 270
12.5.2 Micropollutants in the USA ......................................... 274
12.5.3 Micropollutants in Germany ........................................ 275
12.6 Cost Structure of Water Supply and Wastewater Discharge .................................................. 276
12.6.1 Water Supply ........................................................... 276
12.6.2 Wastewater Disposal ................................................ 278
12.7 Mean Water Price in Germany ........................................ 280
12.7.1 Fiscal Framework ...................................................... 280
12.7.2 Drinking Water ......................................................... 280
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7.3 Wastewater Disposal</td>
<td>281</td>
</tr>
<tr>
<td>12.7.4 International Price Comparison</td>
<td>282</td>
</tr>
<tr>
<td>12.8 Benchmarking in Water Management</td>
<td>283</td>
</tr>
<tr>
<td>12.9 Regulatory Requirements: Comparing Ontario and Germany</td>
<td>284</td>
</tr>
<tr>
<td>12.10 Conclusion</td>
<td>284</td>
</tr>
<tr>
<td>References</td>
<td>286</td>
</tr>
</tbody>
</table>

**Name Index** .......................................................................................... 291

**Subject Index** ....................................................................................... 297
Global Drinking Water Management and Conservation
Optimal Decision-Making
Dore, M.H.
2015, XVIII, 303 p. 88 illus., 73 illus. in color., Hardcover
ISBN: 978-3-319-11031-8