Contents

Part I Power Optics Elements (POE) for High Power Lasers

1 Introduction ... 3
 References ... 5

2 Static POEs Based on Monolithic Materials 7
 2.1 Thermal Stress State of a Body Exposed to Laser Radiation 7
 2.2 Continuous-Wave Irradiation 11
 2.3 Pulsed Irradiation .. 15
 2.4 Repetitively Pulsed Irradiation 18
 2.5 Criteria for the Optical Surface Stability 20
 2.6 Irreversible Changes of the Optical Surface 23
 References ... 23

3 Static OPEs Based on Materials with a Porous Structure 25
 3.1 Temperature Field in Porous Structures Under Convective Cooling ... 25
 3.2 Convective Heat Transfer in a Porous Structure 27
 3.3 Hydrodynamics of a Single-Phase Flow in a Porous Structure 27
 3.4 Effect of the Coolant Inlet and Outlet Conditions on the Hydraulic Characteristics of the POE 29
 3.5 Thermal Conductivity of Porous Structures in POEs 29
 3.6 Thermal Deformation of POE Optical Surface Based on Porous Structure ... 30
 3.7 Liquid-Metal Coolants in POEs Based on Porous Structures ... 35
 References ... 39

4 Adaptive POEs and Optical Systems Based on Them 41
 4.1 POEs Based on Porous Structures 43
 4.2 Formation of the Adaptive POE Surface Conjugate with Wavefront Distortions . . 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Accuracy of Correction of Initial Aberration of an Adaptive POE</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Adaptive Cooled POEs with Magnetostrictive Actuators of Spring Type</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Analytical Model of an Adaptive POE in the Form of a Thin Plate with Discrete Actuators</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>Iterative Synthesis Algorithm of the Shape of the Adaptive POE Reflecting Surface</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Synthesis of Laser Resonator Configurations as an Inverse Problem in Optics</td>
<td>85</td>
</tr>
<tr>
<td>7.1</td>
<td>Resonator with a Given Field</td>
<td>86</td>
</tr>
<tr>
<td>7.2</td>
<td>Phase Problem for a Resonator with Two Adaptive POEs</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>Resonator with an Adaptive and Apodizing POE</td>
<td>90</td>
</tr>
<tr>
<td>7.4</td>
<td>Resonator with an Adaptive POE to Generate the Field with a Given Phase or Amplitude Distribution</td>
<td>90</td>
</tr>
<tr>
<td>7.5</td>
<td>Inverse Problems in the Approximation of the Perturbation Theory</td>
<td>91</td>
</tr>
<tr>
<td>7.6</td>
<td>Resonator with One Adaptive POE for a Laser with a Controlled Output Power</td>
<td>94</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>High-Power Laser Beam Coupler Using a Phase Diffraction Grating</td>
<td>99</td>
</tr>
<tr>
<td>8.1</td>
<td>Statement of the Problem</td>
<td>99</td>
</tr>
<tr>
<td>8.2</td>
<td>Diffraction of Light by a Phase Grating</td>
<td>99</td>
</tr>
<tr>
<td>8.3</td>
<td>Selection of Diffraction Coupler Parameters</td>
<td>102</td>
</tr>
<tr>
<td>8.4</td>
<td>Testing of the Diffraction Coupler</td>
<td>104</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>Optical Coatings</td>
<td>107</td>
</tr>
<tr>
<td>9.1</td>
<td>Optical Coatings Based on Intermetallic Compounds</td>
<td>107</td>
</tr>
<tr>
<td>9.2</td>
<td>Optical Dielectric Coatings</td>
<td>111</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>POEs Based on Highly Porous Cellular Materials</td>
<td>113</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>Large POEs Based on Multilayer Honeycomb Structures</td>
<td>119</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>121</td>
</tr>
</tbody>
</table>
Contents

12 Large POEs Based Composite Materials .. 123
 References ... 125

13 Power Optics and Its New Applications 127
 13.1 Cooling of Laser Diode Assemblies 127
 13.2 New Generation Power Optics Based on Silicon Carbide 129
 References ... 130

Part II High Repetition Rate Lasers and New Applications

14 High Repetition Rate High-Power Wide-Aperture Lasers 133
 14.1 Introduction ... 133
 14.2 Substantiation of Resonator Design 134
 14.3 Theoretical Laser Model and Results of Numerical Analysis .. 136
 14.4 Experimental Results .. 140
 14.5 Conclusions ... 143
 References ... 143

15 Mono-module Disk Laser ... 145
 15.1 Introduction ... 145
 15.2 Disk and Fiber Lasers ... 146
 15.3 Design and Physical Foundations of Disk Laser Operation .. 147
 15.4 Laws of Scaling of Disk Lasers .. 149
 15.5 Regenerative Amplification of Pulses 151
 15.6 Prospects for Scaling the Power of Disk Lasers 153
 15.7 Conclusions ... 154
 References ... 155

16 Pulse-Periodic Lasers for Space Debris Elimination 157
 16.1 High Repetition Rate P–P Mode of Laser Operation 157
 16.2 New Application for Space ... 159
 16.3 Conclusion ... 164
 References ... 165

17 High Power Lasers for New Applications 167
 17.1 Lightnings ... 167
 17.2 Lightning in the Natural Capacitor “Earth–Cloud” 169
 17.3 Lightning in the Natural Capacitor “Cloud–Ionosphere” 174
 17.4 Orbital Electrical Socket .. 177
 17.5 Space Flights by Laser Light ... 178
 17.6 Spark Parameters for LJE ... 182
 17.7 Mechanism of Shock Waves Resonance Association 183
17.8 LJE on the Basis of Shock Waves Resonance Association for MR .. 184
17.9 Resonance Properties of System “Laser-KA” 185
17.10 Lightning Protection System .. 186
17.11 New Approaches for Conductive Channel Creation 188
17.12 Conclusion .. 192
References ... 192

18 Jet Engine Based Mobile GDL—CO₂ for Water Surface Cleaning ... 195
18.1 Introduction .. 195
18.2 The Substantiation of Selection of Laser Type According to Specific Parameters, Operation Autonomy and Mobility ... 197
 18.2.1 Analysis of Applicability of Various Types of Lasers to the Task .. 198
 18.2.2 Substantiation of Selection Gas Dynamic CO₂-Laser ... 201
18.3 Selection and Substantiation of Basic Performances of the Laser Installation and GDL Principal Diagram 203
 18.3.1 Selection of Optimal Radiation Power of GDL 204
 18.3.2 Selection of the GDL Scheme and Its Substantiation ... 207
 18.3.3 Selection of Fuel for Mobile GDL 211
18.4 Selection of the Power Installation for GDL 216
 18.4.1 Selection of a Schematic of the Power Installation 216
 18.4.2 Selection of the Aviation Gas-Turbine Engine 219
 18.4.3 Gas Dynamic Assessment of the Chosen Aero-engine as the Power Unit for Mobile GDL 221
 18.4.4 Design Solution for GDL Power Unit on the Basis of the Gas-Turbine Engine 224
18.5 The Mobile Laser Installation 227
 18.5.1 The Pneumahydraulic Scheme of Laser Installation ... 227
 18.5.2 GDL—General Design Features 229
 18.5.3 Main GDL Assemblies 233
 18.5.4 Exhaust Device of the Laser Installation 243
 18.5.5 Other Systems and Aggregates of the Laser Installation .. 245
 18.5.6 GDL Installation ... 246
18.6 Conclusion .. 248
References ... 249

19 High Power Lasers as a Weapon 251
19.1 Introduction .. 251
 19.1.1 Myth 1. “Combat Lasers have been Developed for Four Decades with no Progress in Sight.” 252
 19.1.2 Myth 2. “Lasers Cannot be Used for a Long Time, Usually they Work Several Seconds.” 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Myth Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.3</td>
<td>Myth 3. “Energy of Laser Weapons is Negligible Compared to the Fire Arms.”</td>
<td>254</td>
</tr>
<tr>
<td>19.1.4</td>
<td>Myth 4. “Efficiency of Lasers is a Few Percent.”</td>
<td>255</td>
</tr>
<tr>
<td>19.1.5</td>
<td>Myth 5. “The Laser Beam has a Huge Diffraction Divergence.”</td>
<td>255</td>
</tr>
<tr>
<td>19.1.6</td>
<td>Myth 6. “One can Easily be Protected from Laser Weapons Using, for Example, an Aluminum Mirror.”</td>
<td>256</td>
</tr>
<tr>
<td>19.1.10</td>
<td>Myth 10. “All the Problems that can be Solved with Laser Weapons, are Easier and Cheaper to Solve by Traditional Means.”</td>
<td>259</td>
</tr>
<tr>
<td>19.2</td>
<td>Conclusion</td>
<td>259</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>260</td>
</tr>
</tbody>
</table>

Appendix ... 261

Index .. 265
High-Power Optics
Lasers and Applications
Apollonov, V.V.
2015, XV, 275 p. 95 illus., 22 illus. in color., Hardcover
ISBN: 978-3-319-10752-3