Contents

1 Introduction to Nonlinear Vibration and Control 1
 1.1 Vibration of Flexible Structures ... 1
 1.2 Causes of Nonlinear Vibration .. 3
 1.2.1 Material Properties ... 3
 1.2.2 Geometric Nonlinearity .. 6
 1.2.3 External Forces and Constraints 7
 1.2.4 Freepay, Backlash, Impact and Friction 9
 1.2.5 Control and Delay ... 11
 1.3 Mathematical Models for Vibration .. 11
 1.3.1 Linear Vibration Modelled Using Sine Waves 12
 1.3.2 Nonlinear Vibration Modelled Using Sine Waves 17
 1.3.3 Multiple Degrees-of-Freedom 20
 1.4 Control of Nonlinear Vibrations ... 25
 1.4.1 Feedback Control of Linear Systems 26
 1.4.2 Feedback Control of Nonlinear Systems 30
 1.5 Continuous Structural Elements ... 31
 1.6 Smart Structures .. 32
 1.7 Chapter Notes .. 33
 References .. 34

2 Nonlinear Vibration Phenomena ... 37
 2.1 State Space Analysis of Dynamical Systems 37
 2.1.1 Harmonically Forced Linear Oscillator 38
 2.1.2 Equilibrium Points ... 40
 2.1.3 Local Linear Approximation Near Equilibrium Points 45
 2.2 Systems with Two States .. 46
 2.2.1 Equilibrium Points for Linear Harmonic Oscillator 47
 2.3 The Link Between State Space and Mechanical Energy 51
 2.3.1 Potential Functions ... 52
 2.4 Multiple Solutions, Stability and Initial Conditions 58
 2.4.1 Stability ... 60
2.5 Periodic and Non-periodic Oscillations 61
2.6 Parameter Variation and Bifurcations 65
 2.6.1 The Onset of Oscillations via a Hopf Bifurcation 71
 2.6.2 Bifurcations in Forced Nonlinear Oscillations 74
2.7 Systems with Harsh Nonlinearities 81
 2.7.1 Friction Oscillator 82
 2.7.2 Impact Oscillator 84
2.8 Nonlinear Phenomena in Higher Dimensions 87
 2.8.1 The Fermi-Pasta-Ulam Paradox 88
 2.8.2 Localization ... 89
 2.8.3 Modelling Approaches 89
2.9 Chapter Notes .. 91
References .. 94

3 Control of Nonlinear Vibrations 97
 3.1 Control Design for Nonlinear Vibrations 97
 3.1.1 Passive Vibration Control 98
 3.1.2 Nonlinear Passive Vibration Isolators 105
 3.2 Semi-active Vibration Control 106
 3.3 Active Vibration Control 110
 3.3.1 Observability and Controllability 111
 3.3.2 Control Law Design 113
 3.4 Stability Theory ... 115
 3.4.1 Lyapunov Functions 116
 3.4.2 Bounded Stability 119
 3.5 Linearisation Using Feedback 123
 3.5.1 Input-Output Linearisation 126
 3.6 Control of Multi-Degree-of-Freedom Systems 130
 3.6.1 Modal Control 130
 3.7 Adaptive Control ... 136
 3.7.1 Adaptive Feedback Linearisation 136
 3.8 Chapter Notes ... 140
References .. 143

4 Approximate Methods for Analysing Nonlinear Vibrations 145
 4.1 Backbone Curves .. 145
 4.2 Harmonic Balance .. 148
 4.2.1 Forced Vibration 152
 4.3 Averaging .. 154
 4.3.1 Free Vibration 154
 4.3.2 Forced Vibration 158
 4.4 Perturbation Methods 163
 4.4.1 Regular Perturbation Theory 163
 4.4.2 Multiple Scales Method 167
5 Modal Analysis for Nonlinear Vibration

5.1 Modal Behaviour in Vibrating Systems

5.2 Modal Decomposition Using Linear Techniques

5.2.1 Discrete Linear Systems

5.2.2 State Space Form for Discrete Linear Systems

5.2.3 Continuous Linear Systems

5.3 Modal Decomposition for Nonlinear Systems

5.3.1 Nonlinear Normal Modes

5.3.2 Internal Resonance

5.3.3 The Geometry of Nonlinear Modal Response

5.4 Backbone Curves from Normal Form Transformations

5.4.1 Single Mode Backbone Curves

5.4.2 Multi-mode Backbone Curves and Bifurcations

5.4.3 Nonlinear Mode Shape Analysis

5.4.4 Backbone Curves in the Symmetry Breaking Case

5.5 Application to Larger Scale Systems

5.6 Chapter Notes

References
Cables

7.1 Horizontal Cable Vibration
- 7.1.1 Cable Sag
- 7.1.2 Static Deflection Due to Sag
- 7.1.3 Dynamic Deflection

7.2 Inclined Cable Vibration
- 7.2.1 Force Balance
- 7.2.2 Strain
- 7.2.3 Excitation
- 7.2.4 Quasi-Static Motion
- 7.2.5 Modal Motion

7.3 Nonlinear Cable Dynamics
- 7.3.1 Compatibility
- 7.3.2 Out-of-Plane Motion
- 7.3.3 In-Plane Motion
- 7.3.4 Modal Interaction

7.4 Case Study of Analysis of Cable Response
- 7.4.1 Harmonic Balance
- 7.4.2 Averaging
- 7.4.3 Multiple Scales
- 7.4.4 Normal Forms

7.5 Case Study of Modal Interaction in Cables
- 7.5.1 Normal Form Analysis of Two Mode Response
- 7.5.2 Backbone Curves for the Cable System
- 7.5.3 Autoparametric Response of the Out-of-Plane Mode

7.6 Chapter Notes

Plates and Shells

8.1 Vibration of Plates
- 8.1.1 Force Moment Relations
- 8.1.2 Strain-Displacement Relations
- 8.1.3 Stress-Strain Relations
- 8.1.4 Force Balance and Compatibility

8.2 Small Amplitude Vibration

8.3 Vibration with Axial Loading

8.4 Vibration of Shells

8.5 Case Study of Nonlinear Shell Vibration
- 8.5.1 Description of Case Study
- 8.5.2 Governing Equations for Composite Shells
- 8.5.3 Galerkin Decomposition
- 8.5.4 Three-Mode Model
- 8.5.5 Subharmonic Resonance
Nonlinear Vibration with Control
For Flexible and Adaptive Structures
Wagg, D.; Neild, S.
2015, XI, 453 p. 142 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-10643-4