Chapter 2
Carbon-Concentrating Mechanism

2.1 Introduction

None of the element on earth is more essential to life than carbon. Every living molecular machine is constructed across a middle staging of organic carbon. Unfortunately, carbon in the planet is locked in extremely oxidized structures, such as carbonate minerals (calcite, aragonite, etc.) and CO₂ gas (Walker 1985). In order to be functional, these oxidized structures ought to be unlocked and transformed into more organic forms, rich in C= C bonds and decorated with hydrogen atoms. With the help of light energy of sun, photosynthetic organisms perform this central task of carbon transformation in nature through the process called “photosynthesis.” Among photosynthetic organisms, photosynthetic microorganisms (such as cyanobacteria and microalgae) play a significant role in the formation of organic biomass and oxygenic environment on Earth. They generate nearly half of the primary products of biosphere by contributing a large portion of carbon capture (Falkowski and Raven 1997). Majority of photosynthetic microorganisms undertake photosynthesis in an aquatic environment of ocean where they face a number of unique restraints regarding the efficient operation of carbon fixation through photosynthesis. In response to ancient changes in atmospheric CO₂ and O₂ levels, the photosynthetic microorganisms evolved a unique environmental adaptation, known as a CO₂-concentrating mechanism (CCM) (Badger and Price 2003), which has a significant positive effect on photosynthetic performance. In recent years, a deeper understanding of the mechanisms and genes underlying the operation of CCM has been increased rapidly.

2.2 Photosynthesis: Basis of Life on Planet

Photosynthesis (Greek: phos “light” and syntithenai “put together”) is a central route in the global carbon cycle which serves as single prevalent flux of organic carbon in biosphere (Kirk 1994). It is a complex physico–chemical process occurs in a diverse group of organisms by which light energy from sunlight is absorbed.
by pigments and converted into chemical energy in the form of organic carbohydrates using carbon dioxide (CO$_2$) and water (See Eq. 2.1).

$$6\text{CO}_2 + 12\text{H}_2\text{O} + \text{Nutrients} + \text{Sun Light} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$$ \hspace{1cm} (2.1)

The photosynthesis process occurs widely in green pigments containing plants, algae, photosynthetic bacteria, and aerobic anoxygenic phototrophic bacteria which results in the release of molecular oxygen and the removal of CO$_2$ from the atmosphere that is used to synthesize carbohydrates (Shiba et al. 1979; Yurkov and Beatty 1998).

2.2.1 Basic Mechanism of Photosynthesis

The photosynthesis process encompasses two universal phases (Fig. 2.1). In the first phase, “light-dependent reactions” involve light absorption, water splitting for electrons and protons source, generation of energy currencies such as NADPH and ATP and oxygen release as a by-product (Kirk 1994). The high-energy chemical intermediates, ATP and NADPH, further utilized as an energy source for the sequence of second phase “light-independent reactions” to fix CO$_2$ and reduce C_i in triose phosphates (carbohydrate precursors). Overall view of the whole photosynthesis process is shown in Fig. 2.2.

2.2.1.1 Light-Dependent Reactions

The light-dependent reactions are a sequence of chemical reactions occurs at the concentrated stacks of thylakoid called grana. It required the straight energy from
sunlight to make energy-carrier molecules (ATP and NADPH), which further used later in the light-independent reactions. The energy to drive light-dependent reactions comes from two photosystems: Photosystem II (PSII/P680) and Photosystem I (PSI/P700) (Barber 2003). The core of a photosystem is made of three molecules: a chlorophyll molecule, an electron acceptor (e.g., pheophytin), and an electron donor (e.g., water) (Van Gorkom 1985). All photosynthetic organisms have chlorophyll a and accessory pigments which include chlorophyll b (also c, d, and e in algae and protistans), xanthophylls, phycocyanin and phycoerythrin (cyanobacteria), and carotenoids (such as β-carotene) (Dufossae et al. 2005). Accessory pigments help to absorb light energy that chlorophyll a does not absorb. Initially, at PSII, light energy is absorbed by a chlorophyll molecule, an electron acquires energy and is “excited” (photoexcitation). The excited electron is further transferred to a primary electron acceptor (Scholes and Fleming 2005), leaving a positively charged chlorophyll ion (photoionization). The positively charged chlorophyll ion then takes a pair of electrons from a splitting of two molecules of water (oxidized, i.e., loses electrons) into one molecule of molecular oxygen (see Eq. 2.2).

\[
2\text{H}_2\text{O} \rightarrow 4\text{H}^+ + \text{O}_2 + 4\text{e}^- \text{ (photolysis)}
\]

(2.2)

The four electrons removed from the water molecules are transferred by an electron transport chain to ultimately reduce two molecule of nicotinamide adenine
carbon-concentrating mechanism (nadp⁺ to nadph) (see eq. 2.3). during the electron transport process, a proton gradient is generated across the thylakoid membrane. this proton motive force is then used to drive the synthesis of atp (photophosphorylation) (see eq. 2.4). this process requires psi, psii, cytochrome b₆f, ferredoxin-nadp⁺ reductase, and chloroplast atp synthase.

\[
n\text{ADP} + n\text{P} + \text{photon} \rightarrow n\text{ATP} \tag{2.3}
\]

\[
n\text{ADP}^+ + 2e^- + 2H^+ \rightarrow \text{NADPH} + H^+ \tag{2.4}
\]

the final stage of the light reactions is catalyzed by psi. this protein has two main subunits forming its core antenna system, psaA and psaB. a special pair of chlorophyll a molecules, denoted as P₇₀₀, lies at the center of the structure, and absorbs light maximally at 700 nm wavelength (green and parson 2003). upon excitation, P₇₀₀ transfers an electron through chlorophyll and a bound quinone (Qₐ) to ferredoxin (Fₐ) (electron acceptor), a water soluble mobile electron carrier located in the stroma (gilbert et al. 2012). the electron transfer constructs a positive charge on the P₇₀₀, which is neutralized by the transfer of an electron from a reduced plastocyanin (electron donor). the electron transport chain from psii to cytochrome b₆f to psi is known as z-scheme as redox diagram looks like letter z.

2.2.1.2 light-independent reactions

in the light-independent process (the dark reaction), CO₂ from the atmosphere or water (for aquatic photosynthetic organisms) is captured and subsequently transformed by the addition of hydrogen to reduced carbon form such as carbohydrates (schuster et al. 1984). the energy for this process comes from the first phase of the photosynthetic process. the incorporation of CO₂ into organic compounds is known as carbon fixation which we will discuss in more detail later in the chapter.

although photosynthesis process occurs in tiny micron-sized cells or organelles, it has a profound impact on the world’s atmosphere and climate (whitmarsh 1999). each year, this CO₂ anabolic process helps in the transformation of approximately 100 billion tons of atmospheric carbon, which corresponds to almost 15% of carbon in atmosphere (raines 2011). only within the last couple of decades, recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition of novel strategies for compartmentalizing and enhancing the rates of photosynthetic carbon fixation reactions in a species-independent manner. among all photosynthetic organisms, aquatic photosynthetic microorganisms face several challenges in acquiring CO₂ from the environment. knowledge of CO₂ fixation in aquatic photosynthetic organisms is vital to understand the ecology between aquatic photosynthetic organisms and earth’s atmosphere, for maintaining the equilibrium of organic carbon in biosphere.
2.3 Carbon-Concentrating Mechanism (CCM): A Potential Tool to Sequester Carbon

Carbon-concentrating mechanism (CCM) is a remarkable adaptation, evolved to maximize photosynthetic efficiency of many photosynthetic organisms in low-CO\textsubscript{2} (L-CO\textsubscript{2}) environment. Since their role was first discovered (Badger et al. 1980), the mechanisms assisting the endurance of photosynthetic cells in L-CO\textsubscript{2} conditions have continued to be intensively studied. Concerns of sustainability, future food, and energy requirements are also motivating the researchers to elucidate the CCM machinery. Although in the last decade, significant progresses have been made to understand the exact CCM machinery of photosynthetic microorganism (Badger and Price 2003; Tabita et al. 2008; Whitney et al. 2011; Warlick 2013). However, many functional factors of CCMs are still unidentified or uncharacterized. The CCM is often an inducible process, and hence, the sensing of the lowering of CO\textsubscript{2} both intra- and extracellularly is needed to drive the structural and biochemical changes that accompany CCM induction. The signals that activate CCM have not been totally explored. More than one molecular inducer might exist to convey about the activation of genes and proteins central to the CCM process and the L-CO\textsubscript{2} adaptation of photosynthetic microorganism cells. The majority of evaluated aquatic CCMs are related to cyanobacteria and microalgae species (Raven et al. 2008; Reinfelder 2011, Ducat and Silver 2012; Barsanti and Gualtieri 2014).

2.3.1 Why Photosynthetic Microorganisms Need CCM?

Quite a number of photosynthetic microorganisms face the following key challenges of photosynthesis in aquatic environment.

2.3.1.1 Rate of Diffusion of CO\textsubscript{2}

Since the energy transformations occurring in metabolism of living organisms are chiefly brought about by chemical changes in carbon-based biomolecules, the absorption and assimilation of CO\textsubscript{2} cannot be considered apart. In aqueous environment, the rate of diffusion of CO\textsubscript{2} is 10,000 times slower than the diffusion of CO\textsubscript{2} in air (Moroney and Ynalvez 2007). So that, there is relative equilibrium of CO\textsubscript{2} between air and water, which can result in carbon stress by causing a depletion of inorganic carbon (C\textsubscript{i}) species including, CO\textsubscript{2}, HCO\textsubscript{3}-, and CO\textsubscript{3}2- in water during active photosynthesis conditions. Furthermore, the photosynthetic microorganism growth environments are also subjected to fluctuations in C\textsubscript{i} concentrations (CO\textsubscript{2} and HCO\textsubscript{3}-) due to pH (see Eq. 2.5)

\[
\text{CO}_2 + \text{H}_2\text{O} \xrightleftharpoons[pK_a=6.35, \text{Slow}]{pK_a=6.35, \text{Fast}} \text{HCO}_3^- + \text{H}^+ \xrightleftharpoons[\text{CO}_3^{2-} + \text{H}^+]{pK_a=6.35, \text{Fast}} \text{HCO}_3^- + \text{H}^+ \quad \text{(2.5)}
\]
At the normal or slightly alkaline pH, water is typically low (approximately 10 μM) in CO₂ concentration (Lapointe et al. 2008), and causes the prevalence of less diffusible C₁ form, HCO₃⁻. It all affects the photosynthesis process that becomes carbon limited due to depletion of CO₂ from their instantaneous vicinity. The capability to scavenge CO₂ as rapidly as it becomes accessible is extremely advantageous to aquatic photosynthetic microorganisms. Figure 2.3 depicts aspects of this supply problem.

2.3.1.2 Limitations of RuBisCO

Despite its essential part in carbon fixation ability of photosynthetic organisms, ribulose bisphosphate carboxylase–oxygenase (RuBisCO) is, however, an unusual slow enzyme with a low affinity for CO₂. The catalytic ineffectiveness of RuBisCO originates not only from its low turnover rates but also exacerbated by O₂, being a competitive substrate of CO₂ in two competing reactions, carboxylation and oxygenation (Portis and Parry 2007). At atmospheric concentrations of CO₂, RuBisCO can only function at about one fourth of its catalytic capacity (Moroney and Ynalvez 2007). The existence of oxygen as a prevalent competitive substrate of CO₂ causes the redirection of fixed carbon into the photorespiratory cycle directing to the loss of at least 30 % of carbon fixed by RuBisCO (Raines 2011). As a result, all different CCMs form of aqueous photosynthetic organisms have evolved adaptations with a common aim of elevating CO₂ around RuBisCO to alter the CO₂/O₂ ratios at the active site in favor of the carboxylase reaction. In this manner, CCMs minimize the costly investment of metabolic energy and carbon in the photorespiration (Raven et al. 2008).
2.3.2 Functional Elements of Photosynthetic Microorganism CCMs

Even though, the complexity of cellular components and abilities of CCMs varies in different organisms, they have three major operational systems in common that allow them to achieve an effective use of CO₂. These are depicted in Fig. 2.4 and include the following.

2.3.2.1 Inorganic Carbon (Cᵢ) Uptake Systems

The Cᵢ uptake systems play a central role to achieve a satisfactory rate of CO₂ fixation into the cells of photosynthetic microorganisms under limiting carbon conditions. Photosynthetic microorganisms can use both form of Cᵢ, ionic bicarbonate ions, and neutral CO₂ molecules. The maneuver of the Cᵢ uptake systems enhances cytosolic concentrations of Cᵢ to thousand times greater than extracellular concentrations (Daley et al. 2012). The Cᵢ uptake system in photosynthetic microorganisms comprised of different HCO₃⁻ transporters and CO₂ uptake systems. Uptake machinery assists in the transfer, accumulation, and utilization of Cᵢ as well as also prevents the diffusive leakage of CO₂ from actively photosynthesizing cells (Mukherjee 2013). The mechanism of Cᵢ uptake is different in prokaryotes and eukaryotes photosynthetic microorganisms. Neutral molecules of CO₂
may passively enter a cell by direct diffusion while negatively charged \(\text{HCO}_3^- \) requires energy-driven transporters. These transporters may contrast in their affinity and diffusion rate of \(C_i \). Most prokaryotic cyanobacteria possess energy-driven active systems for \(C_i \) uptake, however, eukaryotic microalgae relies on the pH gradient setup across the chloroplast thylakoid membrane in the light. In addition, the electrochemical gradient may also be consumed for the symport transportation in eukaryotic microalgae (Price 2011).

2.3.2.2 Enzymatic System for \(C_i \) Conversion

Neutral molecules of \(\text{CO}_2 \) may diffuse passively inside a cell, due to their high solubility in membrane lipids (Mukherjee 2013). This could be very nice in terms of energy saving; however, \(\text{CO}_2 \) may simultaneously, and with same efficiency, diffuse back out of the cells. This challenge is solved by carbonic anhydrase (CA)-based enzymatic system which catalyzes the rapid conversion of transferred \(\text{CO}_2 \) into \(\text{HCO}_3^- \) and vice versa, inside the cell (Tsuzuki and Miyachi 1989). Since, negatively charged \(\text{HCO}_3^- \) is almost thousand times less permeable to the lipid membranes than neutral \(\text{CO}_2 \) species (Price 2011). Thus, particularly at 7.8–8.2 cytoplasmic \(\text{pH} \), \(\text{CO}_2 \) could be the ideal form of \(C_i \) for assimilation in cell while \(\text{HCO}_3^- \) form helps in preventing the outward leakage of \(C_i \) back into the medium. Various active CAs are localized at various sites in the cell predominantly close to the vicinity of RuBisCO where the level of \(\text{CO}_2 \) essentially to be elevated for proper CCM working (Mukherjee 2013).

Carbonic Anhydrases

The CAs (carbonate hydrolyase, E.C. 4.2.1.1) are ubiquitous metalloenzymes (mainly Zn) that catalyzes the quick reversible hydration reaction of \(\text{CO}_2 \) to \(\text{HCO}_3^- \) and protons (\(\text{H}^+ \)) or vice versa. This “reverse” reaction gives CA its name, because it removes a water molecule from carbonic acid (see Eq. 2.6).

\[
\begin{array}{cccc}
\text{Carbon Di Oxide} & \text{H}_2\text{O} & \text{Carbonic Acid} & \text{Bicarbonate ion} \\
\text{H} & \text{O} & \text{O} & \text{O}^- \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Water} & \text{Carbonic Acid} & \text{H}_2\text{O} & \text{H}^+ \\
\text{H} & \text{OH} & \text{O} & \text{H}^+ \\
\end{array}
\]

\[
\text{Carbonic Anhydrase}
\]

Due to the vital biocatalyst role of CAs, nature has advanced its catalytic ability as one of the fastest of all enzymes, to hydrate carbon dioxide and dehydrate bicarbonate a number of times (turnover number \(\geq 10^4–10^6 \) reactions per second)
The equilibrium of both C_i forms in the solution obeys Henderson–Hasselbalch equation (see Eq. 2.7), and proportion of each form in solution is a function of pH.

$$\text{pH} = \text{pKaH}_2\text{CO}_3 + \log_{10} \left(\frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \right)$$

(2.7)

The reaction shifted toward the formation of CO_2 in acidic conditions ($\text{pH} < 6.4$) while HCO_3^- form is prevalent in alkaline conditions ($\text{pH} \sim 6.4$ and 10.3).

(a) Basic structure and mechanism of action

The X-ray crystallographic data of CAs suggest that the zinc containing active site is situated at 15 Å deep cleft and coordinated with three histidines in a distorted tetrahedral geometry and one water/hydroxide molecule ($\text{Zn}^{II} - \text{H}_2\text{O}$ or OH) (Zastrow and Pecoraro 2013). The binding cleft has hydrophobic and hydrophilic faces.

The Fig. 2.5 shows the structural arrangement of CA-II from protein data base (PDB) entry 1CA2 (Eriksson et al. 1988). The active site consists of a zinc prosthetic group, shown with a big red and green sphere. Imidazole rings of highly conserved histidine residues (shown with numbers 94, 96, and 119) directly coordinate with zinc while additional fourth coordination position, shown with small red sphere, occupied by water or hydroxide ion molecule (depending on medium pH).

At this specific pocket, atoms of threonine (Thr$_{199}$) and glutamate (Glu$_{106}$) as well as histidine assist to charge the zinc with a hydroxyl ion (Zastrow and Pecoraro 2013). The catalytic site also have affinity compartment for CO_2, bringing it close to the hydroxide group. CO_2 is not coordinated to the Zn^{II} but instead binds weakly ($K_d \approx 100 \text{ mM}$) at a hydrophobic region (Krishnamurthy et al.

Figure 2.5: Structural organization of carbonic anhydrase (PDB-1CA2)
Because zinc ion is a positively charged, it stabilizes the negative hydroxyl ion, thus it is prepared to attack the CO₂. Several CA isozymes have variations in these and other residues at active site, which may elucidate in their catalytic activity. Despite significant structural variations at the active sites, all CAs (majorly α- and γ-class) employ zinc hydroxide-binding mechanism (Parkin 2004). The zinc hydroxide-binding mechanism can be divided into four steps.

(i) Step 1: Deprotonation

As a universal feature of all known ZnII-metalloenzymes, the ZnII ion acts as a key element to activate this water molecule for catalysis. In biological machinery, zinc is always found only in the Zn⁺² oxidation state (Kröncke and Klotz 2009). The chemical reaction of zinc elements linked with their positive charges and their capacity to form strong but kinetically labile bonds in more than one oxidation state (Berg et al. 2002). Core zinc metal helps in the activation of CA via release of a proton from a Zn-bound water (ZnII–OH₂⁺) to produce a zinc-bound hydroxide ion (ZnII–OH). The role of the Zn⁺² is here to lower the pKₐ of the bound water molecule from 15.7 to 7, making the oxygen slightly more negative and polarization of hydrogen-oxygen bond. This is important for the mechanism, since the hydroxyl ion bound to Zn⁺² form is more active than a water molecule.

(ii) Step 2: Carboxylation

Further, ZnII–OH complex is also employed in H-bond interactions through the hydroxyl group of Thr₁⁹⁹, which is consecutively bonded with the carboxylate group of Glu₁⁰₆ (Kumar et al. 2007). These interactions make ZnII–OH complex a potent catalytically active electron-rich nucleophile, and orient the substrate CO₂ molecule in a favorable position for the nucleophilic attack (Wang et al. 2011). This strong ZnII–OH nucleophile attacks the CO₂ molecule bound in a hydrophobic pocket (substrate-binding site comprises residues Val₁₂₁, Val₁₄₃, Val₂₀₇, Leu₁₉₈, and Trp₂⁰⁹ in hCAII) located above and to the right of the active site, leading to the formation of bicarbonate coordinated to ZnII.

(iii) Step 3: Construction of ring-like intermediate complex

This is an intermediate stage in which a bond is created, connecting the hydroxyl ion and the CO₂ molecule. Anionic oxygen of CO₂ molecule forms a bond through core ZnII to build a ring-like resonance.

(iv) Step 4: Regeneration of active form

In the final step, the active site of CA is restored for another round of catalysis. The formed bicarbonate ion is liberated, and one more water molecule binds to center zinc ion (Berg et al. 2002). Addition of water displaced the bicarbonate ion and liberated into solution. It leads to the formation of catalytically inactive acid form of the enzyme, ZnII–OH₂⁺. To regenerate the active form, a proton transfer reaction from the active site to the environment takes place, which may be assisted either by active site residues (such as His₆₄) or by buffers present in the medium.
The process may be schematically represented by reactions 1–4 in Fig. 2.6:

(b) Variants of CAs

Over the past decade, importance of CAs proteins and their genes in all domains of living organic world are implied by widespread distribution from prokaryotes such as archaeabacteria and eubacteria to eukaryotes such as vertebrates (including humans) (Pastorek et al. 1994), invertebrates (Ferguson et al. 1937), and plants (Badger and Price 1994). The widespread variants of CA enzyme in nature is probably due to the fact that its substrate, C_i, is the most important element involved in all vital cellular processes. The comparison of amino acid sequences of all currently known CAs revealed the fact that they belong to five independent CA gene families, designated as α, β, γ, δ, and ε (Aspatwar et al. 2010). The crystal structures for representatives of α-, β-, and γ-classes have now been determined and shown in Fig. 2.7, while the structures of the recently identified δ- and ε-classes are yet to be solved.
All CA enzyme families are of ancient origin and appears to have evolved independently from one another, i.e., no significant homology in amino acid sequence, thereby providing an excellent example of convergent evolution of catalytic function (Supuran 2011). Thus, they have structurally distinct overall folds in the spatial organization of proteins. Yet, despite their structural differences, mechanism of catalysis of the majority of CAs is similar and common for all evolutionary lineages of the enzyme. Metal-containing active centers of all classes function with a single zinc atom that is essential for catalysis.

(i) α-CAs

The α-CAs gene family is the most intensively studied and widely distributed CA family, which considered as the youngest phylogenetic group. The α-class are found predominantly in animals (Boone et al. 2013), but homologs have also been identified in the bacterium Neisseria gonorrhoeae (Hiltonen et al. 1998) and the green alga Chlamydomonas reinhardtii (Fukuzawa et al. 1990). The active site of α-class has high attraction for Zn, and geometrical organization of conserved histidine residues favors Zn binding. The active site is located at the bottom of a 15-Å-deep active site cleft dominated by hydrophobic amino acid side chains at the base of which is a Zn^{2+} ion invariably coordinated by imidazole rings of three his ligands, His94, His96, and His119 (Tetu et al. 2007) and a water molecule/hydroxide ion. To date at least 15 α-CA- or α-CA-like isoforms have been found in mammals, which can be subdivided five broad subgroups as cytosolic CAs (CA-I, CA-II, CA-III, CA-VII, and CA XIII), mitochondrial CAs (CA-VA, and CA-VB), secreted CAs (CA-VI), membrane-associated (CA-IV, CA-IX, CA-XII and CA-XIV), and those without CA activity, the CA-related proteins (CA-RP VIII, X, and XI). In the aquatic photosynthetic organisms such as green alga Chlamydomonas reinhardtii, three CA isozymes located at periplasmic glycoproteins have been sequenced, evolutionary related to mammalian CAs (Moroney

Fig. 2.7 Refined structure of α-CA (PDB:1CA2, Eriksson et al. 1988), β-CA (PDB:2FGY, Heinhorst et al. 2006), and γ-CA (PDB:3KWD, Peña et al. 2010)
α-CAs typically activated as protein monomers of about 30 kD that are mostly composed of 10-stranded secondary structure, a twisted β-sheet, which separates the α-CA molecules into two halves. Except for two pairs of parallel strands, the β sheet is antiparallel (Liljas et al. 1972).

(ii) β-CAs

The β-CAs are perhaps the most diverse lot of the five currently known CAs, structurally and functionally. The β-CAs were initially identified in chloroplast of higher plants (Burnell et al. 1990; Fawcett et al. 1990) but are now known to be present in various subcellular compartments of microalgae (Eriksson et al. 1996), cyanobacteria (Fukuzawa et al. 1992; Soltes-Rak et al. 1997), eubacteria (Hewett-Emmett and Tashian 1996), archaea (Smith and Ferry 1999), and fungi (Schlicker et al. 2009). Interestingly, β-CA is far more diverse in amino acid sequence than the other two classes, suggesting that they evolved independently. The entire β-CAs share an exclusive α/β fold not exist in any other proteins (Covarrubias et al. 2006). In contrast to α-CAs that is mostly composed of β-sheets, β-CAs contains a number of α-helices. Moreover, β-CAs have only one conserved histidine residue (His 205/459), whereas α-CAs have three (Supuran and Scozzafava 2007). Unlike α and γ-CAs which form strictly monomers and trimers, β-CAs are only functional when homodimeric active core of β-CA oligomerized as a dimer, tetramer, or octamer depending on the species of origin (Mitsuhashi et al. 2000; Huang et al. 2011). The oligomerization state appears to be motivated by outside extensions or exclusive amplifications of the secondary structure of basic β-CA fold (Kimber and Pai 2000; Krissinel and Henrick 2007). β-CA can adopt a variety of functional oligomeric states with molecular masses ranging from 45 to 200 kD (Mitsuhashi et al. 2000). However, the fundamental active structural unit of β-CAs appears to be a dimer or multimers. Dimerization enables formation of the hydrophobic pocket required for CO₂ binding and forms the active site at the interface. Core zinc ion geometry is supported by a combination of cysteine, histidine, and glutamic acid or cysteine again, depending on the species (Mitsuhashi et al. 2000).

The most common arrangement for β-CA is a tetramer (HICA, ECCA, Rv1284) or a pseudo-tetramer composed of two pseudo-dimers (PPCA, HTCA) (Kanth et al. 2012). The extant X-ray crystal structures of β-CA appear to fall into two distinct structural classes as determined by the organization of the active site region in its uncomplexed state, designated here as “Type I β-CA” and “Type II β-CA” (Sawaya et al. 2006). The principal differences between these two types of β-CA relate to the ligation state of the active site zinc ion, and the orientation and organization of nearby residues (Table 2.1).

(iii) γ-CAs

The γ-class may be the most prehistoric form of CAs, having evolved long before the α-class, to which it is more closely related than to the β-class (Badger and Price 2003). The γ-class is also broadly distributed in diverse species from all three domains of life, predominantly in bacteria and archaea domains. A γ-CA was first discovered and isolated in the methanogenic archaeabacterium that grow
Carbon-Concentrating Mechanism

in hot springs Methanosarcina thermophila (Alber and Ferry 1994). To date, the only “Cam” (for CA of Methanosarcina thermophila) has been shown to have CA activity in trimerized form (Kisker et al. 1996). All other Cam homologs from both plants and bacteria, including CcmM from the cyanobacteria Synechocystis PCC6803 and Synechococcus PCC7942, were found to lack CA activity (Peña et al. 2010). This suggested that these homologs have evolved a different function and that Cam is a relic. They obtain energy for growth by metabolizing acetate to \(\text{CH}_4 \) and \(\text{CO}_2 \) (Smith and Mah 1978). The role of \(\gamma \)-CA in acetate metabolism is to drive forward reaction of acetate to methane and \(\text{CO}_2 \) by removing the \(\text{CO}_2 \) concentration by converting it to \(\text{HCO}_3^- \) outside the cell. \(\gamma \)-CAs catalyze the reversible hydration of \(\text{CO}_2 \) to \(\text{HCO}_3^- \) ion on opposing sides of the membrane thereby facilitating anion exchange, in order to reduce the concentration of \(\text{CO}_2 \) produced in acetate metabolism. In the cyanobacterium Synechocystis, the bifunctional CcmM protein localized in carboxysome shows an N-terminal \(\gamma \)-CA-like domain, which has been proposed to bind \(\text{HCO}_3^-/\text{CO}_2 \) (Cot et al. 2008). Recent work has indicated that \(\gamma \)- or \(\gamma \)-like CAs are part of Complex I of the mitochondrial electron transport chain in plants and algae (Wang et al. 2012).

According to the structural classification of proteins (SCOP), \(\gamma \)-CA is part of the Trimeric LpxA Enzyme superfamily, which is characterized by single-stranded polypeptides with left-handed beta-helix fold. Cross-sectional profiles of the \(\gamma \)-CA trimer reveal that each left-handed beta-helix monomer structure resembles an equilateral triangle complex (Iverson et al. 2000). The beta-helix consists of three untwisted, parallel sheets that are connected by left-handed crossovers. The active sites are located at the interfaces between two \(\beta \)-helices. The interface is stabilized by H-bonds, salt bridges, and hydrophobic interactions. The trimer contains 3 active sties, and each monomer contributes His residues located on the surface to coordinate with the 3 zinc ion, \(\text{Zn}^{2+} \) or the cobalt ion, \(\text{Co}^{2+} \) (Kisker et al.

| Table 2.1 Physiological characteristics of Type I \(\beta \)-CA and Type II \(\beta \)-CA |
|----------------|----------------|----------------|
| Physiological character | Type I \(\beta \)-CA | Type II \(\beta \)-CA |
| Coordination sphere for zinc | Cys\(_2\)His(X), where X is an exchangeable ligand (e.g., acetate, acetic acid, water) | Cys\(_2\)HisAsp |
| Asp–Arg dyad (helps in orient the Asp residue to accept a hydrogen bond from an exchangeable ligand atom bound directly to the \(\text{Zn}^{2+} \)) | Asp–Arg dyad present | A broken Asp–Arg dyad is present |
| Hydrogen bond donor (for interaction between \(\text{Zn}^{2+} \) and \(\text{HCO}_3^- \) ions in the exchangeable ligand position) | Hydrogen bond donor present | Hydrogen bond donor absent |
| Narrow hydrophobic active site cleft that lies along the dimer or pseudo-dimer interface and leads to the active site \(\text{Zn}^{2+} \) ion | Present | Present |
1996), and one at each subunit interface. The unique feature of γ-CA is its ability to utilize both metal ions equivalently for its active site, depending on their availability. There are no significant differences between both forms (zinc-bound and cobalt-bound γ-CA) structures and their catalytic mechanism for carbon dioxide hydration reaction. Both have three histidine residues (His$_{81}$, His$_{117}$, and His$_{122}$ residues) that coordinate the ion with the active site (Tripp et al. 2001). In addition to His, there are several other residues which have been identified to play an important role in the active site catalytic mechanism. For example, glutamine (Gln$_{75}$) and asparagine residues (Asn$_{73}$) have been found to help orient Co$^{2+}$ ion for attack on the CO$_2$, and asparagine residue (Asn$_{202}$) prepares the CO$_2$ by polarization, for attack by the Co$^{2+}$ ion. The reaction mechanism of the γ-class is similar to that of the α-class, even though, overall folds and active site residues are different (apart from those that ligand the zinc).

(iv) δ-CAs

A fourth class of CA named δ-class has been isolated from the marine diatom Thalassiosira weissflogii (Roberts et al. 1997). X-ray absorption spectroscopy of the δ-CA, T. weissflogii CA1 (TWCA1), has shown that it indeed does contain a Zn$^{2+}$ ion bound by histidine residues. Presently, there are only 4 other proteins that display amino acid sequence similarity to TWCA1, and thus, its distribution may be restricted to only a small number of diatom species (So and Espie 2005).

(v) ε-CAs

The fifth epsilon class of CAs occurs exclusively in bacteria containing α-type carboxysomes in a few chemolithotrophic bacterium Halothiobacillus neapolitanus, hydrogen bacteria and many strains of marine cyanobacteria that contain CsoS3-carboxysomes (So et al. 2004; So and Espie 2005). X-ray 3-D crystal structure analyses of H. neapolitanus suggest that active site of ε-CA bears some structural resemblance to β-CA (Sawaya et al. 2006) particularly near the metal ion site with a histidine and two cysteine residues acting as zinc ligands, in spite of the absence of any primary sequence similarity. This suggested that CsoS3 is a subclass of β-CA comes from the striking structural similarity of the Zn$^{2+}$-containing active site and from the fact that both need to form dimers in order to be active (Sawaya et al. 2006). In all examples to date, CsoS3 is encoded within the Cso operon which encodes all the components for the α-carboxysome (Rae et al. 2013). Thus, the two forms may be distantly related, even though the underlying amino acid sequence has since diverged considerably. This class of CA has not been found in eukaryotes.

2.3.2.3 RuBisCO Micro-Compartment System

A third basic requirement of a CCM is the existence of effective RuBisCO-rich micro-compartment system, essential for fixing and minimizing the leakage of CO$_2$ (Price et al. 2008). RuBisCO is commonly, catalyzes the first rate limiting
step within the Calvin cycle (Berg et al. 2002). RuBisCO has a large active site that can accept both CO$_2$ and O$_2$ as a substrate (van Lun et al. 2014). O$_2$ has a higher affinity for the active site and therefore will bind at a higher rate than CO$_2$, decreasing the carbon fixation ability of RuBisCO. Photosynthetic microorganisms have developed small vesicles within the cell that have tightly packed and concentrated levels of RuBisCO molecules within proteinaceous shell of a specific structure known as the carboxysome (cyanobacteria) or pyrenoid (eukaryotic microalgae) (Mukherjee 2013). The CO$_2$ is shuttled from outside environment into the proteinaceous shell to maximize the concentration exposure to RuBisCO. We will discuss details of these proteinaceous shells in consequential chapters of the brief.

RuBisCO: Nature’s CO$_2$-Sequestering Enzyme

RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase, E.C.4.1.1.39), the most abundant protein on Earth (Ellis 1979), forms a bridge in between living biological system and the lifeless chemical network via converting inorganic of the air to organic carbon. It is believed that nearly all of the carbon atoms that are present in living organisms have passed through the active site of RuBisCO, as 95% of all carbon fixations by C$_3$ organisms (that includes all phytoplankton) occur via RuBisCO (Raven 1997). RuBisCO occurs universally in most autotrophic organisms from prokaryotes (photosynthetic and chemoautotrophic bacteria, cyanobacteria and archaea) to eukaryotes (various algae and higher plants) on land and in the ocean (Andersson 2008). Since, it constitutes up to 50% of the soluble protein in the leaf of C$_3$ plants and ~30% in C$_4$ plants (Spreitzer and Salvucci 2002; Sugiyama et al. 1984), considered an extremely important enzyme ecologically, agriculturally, and industrially. Due to the importance and abundance of RuBisCO, aspects of the genetics, microbiology, molecular biology, biochemistry, and evolution of the enzyme have been studied intensely.

Molecular Forms of RuBisCO

The first RuBisCO structure to be solved was that from the bacterium *Rhodospirillum rubrum* (Andersson et al. 1989; Schneider et al. 1990). Further studies by many researchers (Portis 1992; Newman and Gutteridge 1993; Taylor and Andersson 1997; Sugawara et al. 1999; Tabita 1999; Portis 2003; Warlick 2013) have shown that all RuBisCOs found in nature are comprised of two types of polypeptide subunits: a large subunit (L) of 50–55 kD and a small subunit (S) of 12–16 kD (Andersson 2008). On the basis of their number, presence or absence, and structural arrangement, RuBisCOs can be classified into four different molecular forms designated as form I, II, III, and IV (Tabita et al. 2007) (see Fig. 2.8). These multimeric forms have often distinctive features; however the primary structural motif, frequent to every holoenzyme forms, is the catalytic large
subunit dimer (Tabita et al. 2008). The most abundant form of RuBisCO, Form I is comprised of 8 small and 8 large subunits. The fundamental catalytic structural unit, the dimer of L, is polymerized 4 times to form a core (L₈) of 8 L subunits, with small subunits on top and bottom of this core (Saschenbrecker 2007; Saschenbrecker et al. 2007; Tabita et al. 2008). It is found in plants, algae and cyanobacteria and some members of α-, β- and γ-proteobacteria. Further categorization of form I of RuBisCO contains IA and IB forms (green-type enzymes from cyanobacteria, eukaryotic algae, and higher plants) and IC and ID forms (red-type enzymes from non-green algae and phototrophic bacteria) (Tabita et al. 2008). Form II is composed of only the large subunit and is present in dinoflagellates and some members of α-, β- and γ-proteobacteria. Interestingly, the phototrophic purple non-sulfur bacteria (e.g., *Rhodobacter sphaeroides*, *Rhodobacter capsulatus*) and other organisms including *Hydrogenovibrio marinus* and some *Thiobacillus* species contain both form I and form II RuBisCO, and in *R. capsulatus* both forms are expressed under photoautotrophic conditions (Badger and Bek 2008). Form III is found in archaea and consists of a large subunit in a dimeric or pentameric arrangement (Andersson 2008). Form IV is referred to as the RuBisCO-like protein (RLP) because it does not catalyze bonafide RuBisCO CO₂/O₂ fixation reactions by using RuBP as the substrate (Hanson and Tabita 2001). Even though

![Fig. 2.8 Structure of RuBisCO forms; form I (Bracher et al. 2011), form II (Tabita et al. 2008), form III (Nishitani et al. 2010), and form IV (Tabita et al. 2007)](image)
the RLPs do not seem to be functionally related to RuBisCO, they do, however, share a common sequence identity but do not maintain some key residues present in RuBisCO that are required for catalytic activity. Thus, one may speculate that the lack of these key residues is the reason for RLP’s inability to catalyze the RuBisCO CO2/O2 bonafide reaction.

It has been suggested that photosynthetic RuBisCO evolve distinct forms of RuBisCO in nature; form I, II, III, and RuBisCO-like form IV based on amino acid sequences, phylogeny, and structure (Tabita et al. 2007; Andersson and Backlund 2008). An important structural difference between the form I/II and form IV subfamilies lies in loop 6 in which the Lys334 of the photosynthetic RuBisCOs is generally substituted by another amino acid residue (Carrae-Mlouka et al. 2006).

Structural Arrangement of RuBisCO

Numerous high-resolution crystal structures of different forms of RuBisCO are now available which provide a molecular framework for the understanding of structural arrangement of RuBisCO at the molecular level. On the basis of available facts, it is now believed that the fundamental catalytic structural unit of all RuBisCOs is common to all forms, usually consists of two distinct catalytic subunits; large catalytic subunits (L, about 55 kD each) and small subunits (S, about 15 kD each) (Andersson 2008). In form I RuBisCO, eight copies each of two distinct subunits are cemented to form quaternary structure of about 560 kD molecular mass for the complete protein (L8S8) superstructure (Bracher et al. 2011). The 8L subunits of form I are arranged as an octameric core surrounded by two layers of four S subunits, with each layer located on opposite sides of the molecule. A Mg2+ cofactor as well as the carbamylation of Lys201 is also required for the activity of the enzyme (Tabita et al. 2008).

Genes for RuBisCO

The clustering of genes (e.g., *rbcL*, *rbcX*, and *rbcS*) is thought to assist in coding for the structurally related various complex components synthesis and assembly (Tabita 1999) of CO2-fixing hexadecameric (L8S8) RuBisCO enzyme. For synthesis of the functional RuBisCO holoenzyme in microalgae, eight identical large subunits encoded by the chloroplast gene *rbcL* and eight identical, small subunits encoded by the nuclear gene *rbcS* (Clegg et al. 1997). Within cyanobacteria, both genes are adjacent and co transcribed.

(a) **rbcL**

Despite variations in the amino acid sequences (average amino acid sequence identity is 31 %), the overall secondary structural motifs of the large (catalytic) subunit shares similarities and well conserved within all forms of RuBisCO super
family (Tabita et al. 2007). \(\text{rbcL} \) expression may be regulated by the epistasy of synthesis (CES) paradigm, in which unassembled L-subunit motifs connect to mRNA of \(\text{rbcL} \) to autoregulate its translation (Whitney et al. 2011). Large subunits within RuBisCO are arranged as antiparallel dimers, with the smaller N-terminal domain (4–5 stranded mixed \(\beta \) sheet) of one monomer adjacent to the C-terminal domain (8 consecutive \(\beta-\alpha \) units) of the other monomer (Tabita et al. 2007). Each active site is at an interface between monomers within an L\(_2\) dimer, explaining the minimal requirement for a dimeric structure. The \(\beta-\alpha \) units of C-terminal, are linked by many loops of different length and arranged as an eight stranded parallel \(\alpha/\beta \) barrel structure, which act as a evolutionary markers and directed evolution techniques to engineer novel catalytic activities (Vega et al. 2003). The substrate-binding site is at the intra-dimer (RbcL\(_2\)) interface on the mouth of a \(\alpha/\beta \)-barrel domain of the large subunit, linking the C-terminal domain of the one large subunit (\(\beta \)-strands) and the N-terminal domain of the second large subunit. Consequently, the functional unit configuration of RuBisCO is an L\(_2\) dimer of large subunits harboring two active sites. The substrate binds in an extended conformation across the opening of the \(\alpha/\beta \) barrel and is secured at two distinctive phosphate-binding sites at reverse sides of the \(\alpha/\beta \)-barrel and in the center at the \(\text{Mg}^{2+} \) cofactor-binding site (Tabita et al. 2007). Most catalytic residues at enzyme active site are polar, including some charged amino acids (e.g., Thr, Asn, Glu, and Lys) (Bartlett et al. 2002).

(b) \(\text{rbcS} \)

Small subunits are not necessary for the assembly of the RbcL\(_8\) core. However, availability of \(\text{rbcS} \) (13.3 kD) protein up-regulates the gene expression of \(\text{rbcL} \) primarily at the transcript level in a quantitative manner for stoichiometric assembly of RuBisCO holoenzyme (Morita et al. 2014). It is tempting to speculate that the small subunits contribute substantially to the differences in kinetic properties observed among different RuBisCO enzymes. In eukaryotic microalgae, small subunits are probably encoded by the \(\text{rbcS} \) multigene family in the nuclear genome (Clegg et al. 1997). It is believed that mRNA of \(\text{rbcS} \) has been laterally transferred from the ancestral plastid’s genome to become a nuclear multigene family (Whitney and Andrews 2001). They have a transit peptide, bearing an amino-terminal targeting signal, which helps small subunit precursor proteins to be imported and assembled into the chloroplasts after translation on cytosolic ribosomes, where they are processed and folded to the native state (Flores-Paerez and Jarvis 2013). Whereas, the large subunits display relatively small variations in the different forms, the small subunit is more diverse. The small subunits help to sustain the catalytic competence and structural integrity of RbcL\(_8\)S\(_8\) holoenzyme by establishing prevailing links among the four RbcL\(_2\) dimers (Windhof 2011, Liu et al. 2010). The common core structure of small subunits consists of a four-stranded antiparallel \(\beta \)-sheet covered on one side by two helices. Among the form I RuBisCOs, most striking variations occur in two distinct locations, the small subunits differ in between \(\beta \) strands A and B of small subunit, called \(\beta \text{A–}\beta \text{B loop} \) (Andersson 2008).
In contrast to eukaryotes, most prokaryotes such as cyanobacteria, the gene \textit{rbcX} (~15.5 kD) is present between \textit{rbcL} and \textit{rbcS} and co-transcribed with the \textit{rbcL} (52 kD) and \textit{rbcS} genes on the same operon (Larimer and Soper 1993). Previous co-expression studies showed that \textit{rbcX} product of the intermediary \textit{rbcX} gene is not part of the final RuBisCO complex and unlike \textit{rbcL} and \textit{rbcS} whose sequences are highly conserved by functional constraints. The \textit{rbcX} sequence is highly variable (<60 \% similarity) among cyanobacterial species (Rudi et al. 1998). However, recent evidence suggests that juxtaposition of \textit{rbcX} within an \textit{rbc}LXS operon is highly conserved in \(\beta\)-cyanobacteria, recommending that the \textit{rbcX} product may function in a role associated with \(\text{CO}_2\) fixation (Emlyn-Jones et al. 2006; Saschenbrecker 2007; Saschenbrecker et al. 2007; Onizuka et al. 2004).

Reaction Mechanism of RuBisCO

RuBisCO is most commonly known to a bifunctional enzyme that occurs in the stroma of chloroplasts and catalyzes both carboxylation and oxygenation reactions (Tabita et al. 2008). These reactions are the basis for the name RuBP carboxylase/oxygenase (RuBisCO). In order for RuBisCO to function, it requires substrates supplied from the surrounding environment. In these reactions, both \textit{CO}_2 and \textit{O}_2 substrates compete for the same active site on RuBisCO to drive photosynthesis and photorespiration, respectively. Both metabolic routes are found in most autotrophic organisms, ranging from prokaryotes (cyanobacteria and other phototrophic and chemoautotrophic bacteria) to eukaryotes (various algae and higher plants) (Spreitzer et al. 2002).

(a) Carboxylation

When \textit{CO}_2 is the substrate gathered in specific location of the RuBisCO, it performs a conformation change and catalyzes the carboxylation reaction with the activation of RuBP carboxylase. Carboxylation involves the fixation of one molecule of \textit{CO}_2 with a molecule of five-carbon sugar substrate, ribulose-1,5-bisphosphate (RuBP) to produce a highly unstable six-carbon reaction intermediate (Blankenship 2014). Due to the intermediate molecules instability, carbon splits into two molecules of 3-phosphoglycerate (3PGA). This reaction occurs in several partial reactions (Karkehabadi 2005) (see Fig. 2.9).

- **Enolization**—Enzymatic abstraction of a proton (H\(^+\)) from C-3 of the RuBP substrate results in the formation of the 2,3-enediol intermediate (I). Mg\(^{2+}\) aids in stabilizing the 2,3-enediol transition state for \textit{CO}_2 addition and facilitates the C–C bond cleavage that leads to two 3-C products.
- **Carboxylation**—The addition of \textit{CO}_2 at C-2 to create a 6-carbon \(\beta\)-keto acid intermediate (II), 2-carboxy-3-keto-arbinitol-1,5-bisphosphate (CKABP).
Hydration—The hydration of CKABP yields the gem-diol (III) form of the ketone.

Deprotonation—Deprotonation at C-3 hydroxyl of the gem-diol (III) leads to C–C bond cleavage and results in formation of one molecule of 3-phosphoglycerates (3PGA) and one molecule of 3-PGA in the form of carbanion.

Protonation—The carbanion is protonated, and the second molecule of 3-PGA is formed.

(b) Oxygenation

When molecular O₂ is the substrate, RuBisCO catalyzes the oxygenation of sugar substrate RuBP to yields one molecule each of 3PGA and 2-phosphoglycolate (Karkehabadi 2005). The phosphoglycolate has very limited use in most organisms.
and needs to be re-circulated through the sequence of complex energy-requiring reactions called C-2 photosynthesis or photorespiration that partly salvages carbon from 2-phosphoglycolate, via conversion to 3-phosphoglycerate, involves enzymes of chloroplasts, peroxisomes, and mitochondria. This pathway recovers 3/4 of the carbon from 2-phosphoglycolate as 3-phosphoglycerate while the rest is released as CO₂. As photorespiration consumes ATP and reducing power, while losing CO₂, before it is converted to PGA and reenters to the metabolic pathways for carbon fixation (Laing et al. 1974). It is consider a wasteful process which substantially reduces the efficiency of CO₂ fixation by up to 50 % (Ogren 1984). Thus, the incapability of the RuBisCO to avoid the reaction with O₂ greatly reduces the photosynthetic capacity of photosynthetic organism. It would appear that eliminating or reducing the RuBisCO oxygenase activity would potentially increase carbon assimilation, thereby rising photosynthetic efficiency significantly (McGrath and Long 2014). Many algae and photosynthetic bacteria have conquered this restriction by devising means to raise the CO₂ concentration around the enzyme through carbon-concentrating mechanism.

2.4 Fate of Carbon in Photosynthetic Microorganisms

Although CO₂ occurs in small amounts in the atmosphere, it has a considerable impact on living organisms, since it is a key substrate of photosynthesis. The aquatic environment is home of diversity of photosynthetic pathways as terrestrial environments, and therefore, photosynthetic organisms reduce CO₂ via various carbon fixation mechanisms, C₃, C₄, CAM, and C₃–C₄ photosynthetic pathways (Xu et al. 2012). Reduction takes place in the stroma, or soluble phase, of chloroplasts, coupled to the consumption of NADPH and ATP synthesized by the light reactions of thylakoid membranes (Blankenship 2014). Here, CO₂ and water are combined with ribulose-1,5-bisphosphate to form two molecules of 3-phosphoglycerate. Phosphoglycerates are familiar molecules in the cell, and many pathways are available to use it to produce larger biomolecules such as carbohydrate. Most of the phosphoglycerate made by RuBisCO is recycled to build more ribulose biphosphate, which is needed to feed the carbon-fixing cycle. The continued operation of these cycles is ensured by the regeneration of ribulose-1,5-bisphosphate. From many studies on primary photosynthetic carbon metabolism, it is believed that the operation of the Calvin–Benson cycle (C₃ cycle) is predominant in algae and cyanobacteria. However, recent papers have also reported evidence for the operation of C₄ photosynthesis and both C₃ and C₄ fixation in some species, as an alternative CCM. Alterations of photosynthetic pathways under environmental stress such as CO₂ deficiency have been suggested to contribute to the adaptation of photosynthetic organisms to environmental stress. The major physiological differences between C₃ and C₄ cycles are tabulated in Table 2.2.
2.4.1 C3 or Calvin–Benson–Bassham Cycle

A majority of photosynthetic organisms assimilate CO₂ via a set of redox reactions, C₃ pathway (Calvin–Benson–Bassham cycle) that occurs without light during photosynthesis (Björn 2008). The cycle was elucidated about 50 years ago as a result of a series of elegant experiments by Calvin, Bassham, and Benson at the University of California, Berkeley, for which a Nobel Prize was awarded in 1961 (Calvin et al. 1950). They used radioactive ¹²CO₂ isotopes to reveal the path of carbon atoms taking place in unicellular green alga Chlorella pyrenoidosa, during the transformation of CO₂ into carbohydrates. The C₃ cycle utilizes the high-energy products of light-dependent reactions, ATP and NADPH, to fix atmospheric CO₂ into carbon compounds that are used to fuel the rest of plant metabolism (Whitmarsh 1999). The carbon in CO₂ is the most oxidized form, (+4) oxidation state, found in nature. With 4 valence shell electrons, carbon tends to form covalent compounds. Thus, first stable intermediate, 3-phosphoglycerate of the C₃ cycle, is more reduced (+3) and after it is further reduced to glyceraldehyde-3-phosphate (+1) product (Blankenship 2014). Therefore, early reactions of the C₃ cycle complete the reduction of atmospheric carbon and, in so doing, facilitate its incorporation into organic compounds. This cycle operates in plants, algae, cyanobacteria, some aerobic or facultative anaerobic proteobacteria, CO₂-oxidizing mycobacteria, and representatives of the genera sulfobacillus (iron- and sulfur-oxidizing firmicutes) and Oscillochloris (green sulfur bacteria) (Whitmarsh 1999). The Calvin cycle occurs in three stages as shown in Fig. 2.10: carboxylation of RuBP, reduction of 3-phosphoglycerate, and regeneration of RuBP.

2.4.1.1 Carboxylation of Ribulose Bisphosphate

The CO₂ molecules enter in the cycle by reacting with CO₂ acceptor RuBP to yield the first stable intermediate of the cycle, two molecules of 3-phosphoglycerate (3-PGA), reaction catalyzed by the enzyme RuBisCO (Kirk 1994). It is this 3-C molecule, the first stable product of the carboxylation reaction of RuBisCO that gives the C₃ cycle its name. The affinity of RuBisCO for CO₂ is sufficiently high to ensure rapid carboxylation at the low concentrations of CO₂ found in photosynthetic cells.

<table>
<thead>
<tr>
<th>Table 2.2</th>
<th>Physiological differences between C₃ and C₄ cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>C₃ cycle</td>
</tr>
<tr>
<td>CO₂ molecule acceptor</td>
<td>Ribulose bisphosphate</td>
</tr>
<tr>
<td>First stable product</td>
<td>Three-carbon compound</td>
</tr>
<tr>
<td></td>
<td>3-phosphoglycerate (3PGA)</td>
</tr>
<tr>
<td>Photorespiration rate</td>
<td>High and leads to loss of fixed CO₂</td>
</tr>
<tr>
<td>Optimum temperature</td>
<td>20–25 °C</td>
</tr>
</tbody>
</table>
2.4.1.2 Reduction of 3-Phosphoglycerate

The 3-phosphoglycerate formed in the carboxylation stage undergoes reductive phase of the cycle follows with two modifications:

i. The 3-PGA is first phosphorylated catalyzed by 3-PGA kinase to 1,3-bisphosphoglycerate (1,3-BPGA) through use of assimilatory power, ATP, produced in the light reactions.

ii. Further, 1,3-BPGA is reduced to glyceraldehyde-3-phosphate (G-3-P), i.e., carboxyl group is transformed into an aldehyde group, through utilization of the NADPH produced by the light reactions, enzyme NADP: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes this step.

2.4.1.3 Regeneration of Ribulose-1,5-Bisphosphate

In order to keep the cycle functioning in the fixation of CO₂ in C₃ pathway, it is essential that necessary biochemical intermediates; CO₂ acceptor, RuBP, etc., be constantly regenerated. To prevent depletion of RuBP, G-3-P enters in the various

Fig. 2.10 Stages of Calvin cycle
sequential reactions of regenerative phase to ensure adequate supply of CO$_2$ acceptor. All steps of regeneration are summarized as follows:

1. One molecule of G-3-P is converted with the action of triose phosphate isomerase (TP isomerase) to dihydroxy-acetone-3-phosphate (DHAP) in an isomerization reaction.
2. DHAP then undergoes aldol condensation with a second molecule of G-3-P, a gluconeogenesis reaction catalyzed by aldolase to form fructose-1,6-bisphosphate (F-1,6-BP).
3. F-1,6-BP occupies a key position in the regeneration cycle and is hydrolyzed using enzyme fructose-1,6-bisphosphatase (F-1,6-BPase) to fructose-6-phosphate (F-6-P), which then reacts with the enzyme transketolase.
4. A 2-C unit (from C$_1$ and C$_2$ position) of donor F-6-P is transferred via transketolase to a third molecule of G-3-P acceptor to give erythrose-4-phosphate (E-4-P) and xylulose-5-phosphate (X-5-P).
5. Further, another aldol condensation via aldolase occurs between E-4-P and a fourth molecule of triose phosphate to yield the 7-C sugar sedoheptulose-1,7-bisphosphate (S-1,7-BP).
6. The S-1,7-BP is sequentially hydrolyzed by dephosphorylation at the C$_1$ position with the help of phosphatase (SBPase) to give sedoheptulose-7-phosphate (S-7-P).
7. The S-7-P donates a 2-C unit to the last 5th one molecule of G-3-P via transketolase enzyme and forms ribose-5-phosphate (R-5-P) and xylulose-5-phosphate (X-5-P).
8. The two molecules of X-5-P epimerized the C$_3$ position to form two molecules of R-5-P sugars by enzyme ribulose-5-phosphate epimerase (R5P-epimerase). The third molecule of R-5-P is isomerized to form R-5-P by ribose-5-phosphate isomerase (R5P-isomerase).
9. Finally, ribulose-5-phosphate kinase (R-5-P kinase) catalyzes the phosphorylation at the C$_1$ position of R-5-P with ATP thus regenerating the three essential molecules of the initial CO$_2$ acceptor, RuBP (total 15-C) by reactions that resuffle the carbons from the five molecules of triose phosphate ($5 \times 3 = 15$ C).

Thus, the entire C$_3$ cycle consumes two molecules of NADPH and three molecules of ATP for every molecule of CO$_2$ fixed into hexose or carbohydrate (Falkowski and Raven 1997).

2.4.2 C_4 Cycle or Hatch–Slack Pathway

Apart from classical C$_3$ pathway, Hatch and Slack (1966) reported a new C$_4$ photosynthesis pathway of CO$_2$ fixation in sugar cane, which gives an initial four-carbon compound, oxalacetate, rather than 3-PGA. Although timing is uncertain, it is currently thought that C$_4$ pathway evolved gradually from C$_3$ ancestors (30 million years ago) through structural and biochemical modifications, in relation to...
environmental pressures (e.g., slumping ambient CO$_2$ level) (Xu et al. 2012). In order to evade the waste photorespiration pathway, C$_4$ plants possess an additional cytosolic carbon-fixing enzyme phosphoenolpyruvate carboxylase (PEP carboxylase) in addition to RuBisCO (Furbank and Taylor 1995; Chollet et al. 1996). The PEP carboxylase has a higher affinity for CO$_2$ (lower K_m) and lower affinity for O$_2$ (higher K_m) than RuBisCO (Sage 2002). Thus, PEP carboxylase is able to fix CO$_2$ at relatively low intracellular CO$_2$ concentration. C$_4$ plants are believed to have evolved gradually from C$_3$ plants through several intermediate stages of C$_3$–C$_4$ plants (Xu et al. 2012). It was also noted that C$_4$ plants usually show only small or even no apparent CO$_2$ loss in light. The explanation lies in their unique anatomy (called Kranz anatomy) (Kennedy 1976) and multiple carboxylation reactions. The C$_4$ terrestrial plants use a ring of specialized cells, bundle sheath cells, for more efficient C$_3$ carbon fixation, equipped with a CO$_2$-concentrating mechanism that supports carboxylation of ribulose-1,5-bisphosphate over oxygenation reactions.

As shown in Fig. 2.11, the primary step of C$_4$ cycle is the production of 3 carbon phosphoenolpyruvate (PEP) from pyruvate using enzyme pyruvate orthophosphate dikinase (PPDK, E.C. 2.7.9.1), inorganic phosphate, and ATP. The next step is the CO$_2$ fixation through irreversible β-carboxylation of phosphoenolpyruvate (PEP) to 4-carbon oxaloacetate (first stable product) in the presence of ubiquitous

![Fig. 2.11 Schematic representation of Hatch–slack pathway](image-url)
enzyme PEP carboxylase, bicarbonate ions, and Me\(^{2+}\) (Furbank and Taylor 1995). Both steps occur in the mesophyll cells. Further, oxaloacetate can be reduced quickly to four-carbon malate using enzyme malate dehydrogenase in the leaf mesophyll cells. Malate is easily transferred to bundle sheath cells and converted to 3 carbon pyruvate, releasing CO\(_2\) and reducing NADP to NADPH for C\(_3\) cycle. This maintains CO\(_2\) concentration high, so that RuBisCO is used almost entirely as a carboxylase, minimizing photorespiration. Thus, PEP carboxylase activity helps to refix any respired CO\(_2\) formed from the oxygenase function of RuBisCO to prevent the photorespiratory release of CO\(_2\).

Although, surprisingly lacks of Kranz dual-cell compartmentation in aquatic photosynthetic microorganisms, recent metabolic labeling and genome sequencing data suggest that the some species including green alga (Chara contraria, Ostreococcus tauri, and Micromonas) and diatoms (Thalassiosira weissflogii, Phaeodactylum tricornutum, and T. pseudonana) could also use the maneuver of both C\(_3\) and C\(_4\) fixation (Keeley et al. 1986; Keeley 1998; Derelle et al. 2006; Haimovichiae Dayan et al. 2013). Presence of C\(_4\) fixation has been further strengthened by the occurrence of relevant genes in their genomes. Ostreococcus has all the machinery; PEP carboxylase, NADP\(^+\)-dependent malic enzyme, and pyruvate orthophosphate dikinase with a predicted chloroplast-targeted transit peptides in a later two, necessary to perform C\(_4\) fixation (van Ooijen et al. 2012). Interestingly, only one member of the marine Chlorophyta, macroscopic green macroalga Udotea flabellum, has been shown to perform C\(_4\) photosynthesis (Reiskind and Bowes 1991). It shows that U. flabellum utilizes PEP carboxykinase (PEPCK) (as NADP\(^+\)-malic enzyme being absent), which activity in Udotea extracts is equivalent to RuBP carboxylase (Reiskind et al. 1988; Reiskind and Bowes 1991). Recently, the coexistence of genes necessary for both C\(_3\) and C\(_4\) pathway enzymes has also been reported in another green-tide-forming macroalga, Ulva prolifera (Xu et al. 2012). The expression levels of C\(_3\) and C\(_4\) photosynthesis genes, rbcL and PPDK, increased under stress conditions (such as high and low salinity, high and low temperature). However, contradictory experimental facts of Kremer and Kuppers (1977) shedded doubt on C\(_4\) photosynthesis in algae. They investigated short-term (2–5 s) photosynthesis using H\(^{14}\)CO\(_3\) in various species of different algal classes. Ulva produces malate and aspartate organic acids only as a minor component of short time \(^{14}\)C-labeling fixation (less than 10 % of the total \(^{14}\)C-labeling), while RuBP carboxylase (E.C. 4.1.1.39) was the main carbon-fixing enzyme. Usually, aquatic plants are subjected to much lower pCO\(_2\) for photosynthesis. Thus, environmental stress may act as a major driving force to develop alterations of photosynthetic pathways toward C\(_4\) metabolism for suppression of photorespiration. As another example, a submerged aquatic monocot plant Hydrlilla verticillata operates a facultative, single-cell C\(_4\) system (Rao et al. 2006), i.e., capable to change its photosynthetic pathway from C\(_3\) to C\(_4\) under conditions of CO\(_2\) deficiency. However, studies of photosynthetic pathways of photosynthetic microorganisms are scanty, and there are extremely restricted knowledge of the pathways, which regulating the biology of the altered aquatic C\(_4\) species. Thus, general occurrence of C\(_4\)-like mechanisms in aquatic photosynthetic
microorganisms is therefore still in question. Despite its additional energetic cost, if photosynthetic microorganisms are capable of C₄ photosynthesis, it could comprise of a significant ecological benefit in CO₂-limiting conditions of phytoplankton blooms, particularly in conditions where competitors have inferior CCM efficiencies (or no CCM).

References

Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley
Daley SME, Kappell AD, Carrick MJ, Burnap RL (2012) Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. PLoS ONE 7(7):e41286
Hanson TE, Tabita FR (2001) A ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci 98(8):4397–4402

Kimber MS, Pai EF (2000) The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J 19(7):1407–1418

References

Mukherjee B (2013) Investigation of the role of putative inorganic carbon transporters in the carbon dioxide concentrating mechanisms of Chlamydomonas reinhardtii. Calcutta University, Kolkata

Warlick B (2013) Functional discovery and promiscuity in the RuBisCO superfamily. University of Illinois at Urbana-Champaign, USA
Photosynthetic Microorganisms
Mechanism For Carbon Concentration
Singh, S.K.; Sundaram, S.; Kishor, K.
2014, X, 123 p. 27 illus., 26 illus. in color., Softcover
ISBN: 978-3-319-09122-8