Contents

1 Introduction ... 1
 1.1 Overview of Digital Microfluidics 4
 1.1.1 Theory of Electrowetting-on-Dielectric 4
 1.1.2 Hardware Platform ... 7
 1.1.3 Sensing Systems ... 8
 1.1.4 Fault Models .. 12
 1.2 Computer-Aided Design and Optimization 14
 1.2.1 Design Flow for Digital Microfluidic Biochips 14
 1.2.2 Testing Techniques ... 16
 1.2.3 Error Recovery .. 18
 1.2.4 Pin-Assignment Methods 18
 1.2.5 Chip-Level Design .. 21
 1.3 Outline of the Book .. 23

References ... 24

2 Error-Recovery in Cyberphysical Biochips 27
 2.1 Motivation and Related Prior Work 27
 2.2 Overview of Cyberphysical Biochips 30
 2.2.1 Sensing Systems ... 30
 2.2.2 “Physical-Aware” Software 34
 2.2.3 Interfaces Between Biochip and Control Software 34
 2.3 Reliability-Driven Error-Recovery 36
 2.3.1 Error Recovery Strategies 36
 2.3.2 Reliability Consideration in Error-Recovery 39
 2.3.3 Comparison Between Two Sensing Schemes 41
 2.4 Error Recovery and Dynamic Re-synthesis 43
 2.4.1 Off-Line Data Preparation Before Bioassay Execution 44
 2.4.2 On-Line Monitoring of Droplets and Re-synthesis of the Bioassay .. 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Simulation Results</td>
<td>52</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Preparation of Plasmid DNA</td>
<td>52</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Protein Assays: Interpolating Mixing and Exponential Dilution</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Chapter Summary and Conclusions</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Real-Time Error Recovery Using a Compact Dictionary</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Motivation and Related Prior Work</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Generation of the Error Dictionary</td>
<td>64</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Dictionary Entry for Error-Free Case</td>
<td>65</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Dictionary Entries for Single-Operation Errors</td>
<td>67</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Dictionary Entries for Multiple-Operation Errors</td>
<td>68</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Consideration of Error-Recovery Cost and Reduction in the Number of Dictionary Entries</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Actuation Matrix</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Estimation for the Percentage of Non-zero Elements in Actuation Matrices</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Compaction of the Error Dictionary</td>
<td>74</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Compaction of the Actuation Matrix</td>
<td>74</td>
</tr>
<tr>
<td>3.5.2</td>
<td>De-Compaction of the Error Dictionary</td>
<td>75</td>
</tr>
<tr>
<td>3.6</td>
<td>Implementation of Dictionary-Based Error Recovery on FPGA</td>
<td>76</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Sensing Module</td>
<td>77</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Memory for Storage of the Error Dictionary</td>
<td>78</td>
</tr>
<tr>
<td>3.6.3</td>
<td>FSM Module</td>
<td>79</td>
</tr>
<tr>
<td>3.6.4</td>
<td>De-Compaction Module</td>
<td>79</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Resource Report for Synthesized Modules</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Fault Simulation in the Presence of Chip-Parameter Variations</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>Simulation Results</td>
<td>82</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Exponential Dilution of a Protein Sample</td>
<td>82</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Interpolation Dilution of a Protein Sample</td>
<td>88</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Mixing Tree Bioassay</td>
<td>89</td>
</tr>
<tr>
<td>3.8.4</td>
<td>PCR Bioassay</td>
<td>90</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Flash Chemistry</td>
<td>91</td>
</tr>
<tr>
<td>3.9</td>
<td>Chapter Summary and Conclusions</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Biochemistry Synthesis Under Completion-Time Uncertainties in Fluidic Operations</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Biochips with Multiple Clock Frequencies</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Operation-Dependency-Aware Synthesis</td>
<td>100</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Synthesis for Sequencing Graphs with Directed Tree Structure</td>
<td>101</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Synthesis for Sequencing Graphs in General Cases</td>
<td>103</td>
</tr>
</tbody>
</table>
4.4 Droplet-Routing Procedure ... 105
 4.4.1 Routability Analysis .. 106
 4.4.2 Searching Droplet-Routing Paths 108
 4.4.3 Online Decision-Making for Droplet-Routing 108
4.5 Simulation Results ... 109
 4.5.1 Comparisons Between the Proposed Synthesis
 Algorithm and Previous Algorithms 109
 4.5.2 Number of Droplets Consumed 109
 4.5.3 Results Derived by the
 Operation-Interdependency-Aware Synthesis Approach 113
 4.5.4 Completion Time with Multiple Clock Frequencies 114
4.6 Chapter Summary and Conclusions 114
References ... 115

5 Optimization of On-Chip Polymerase Chain Reaction 117
 5.1 Introduction .. 117
 5.2 Cyberphysical Biochip with On-line Decision Making 120
 5.2.1 Statistical Model for the Number of DNA Strands
 in a Droplet ... 121
 5.2.2 A Simplified Statistical Model for Amplification
 of DNA .. 121
 5.2.3 An Improved Statistical Model for Amplification
 of DNA .. 122
 5.3 Optimized Resource Placement Under Proximity Constraints 123
 5.3.1 Device-Proximity Constraints on a PCR Biochip 124
 5.3.2 Objective Function for Device Placement 125
 5.3.3 Device Placement on a PCR Biochip 126
 5.3.4 Optimization of Device Placement Results 128
 5.4 Bioassay-Specific Reservoir Allocation for PCR Biochip 130
 5.4.1 Electrode Ring on Low-Cost Biochips 130
 5.4.2 Droplet Routing on Low-Cost PCR Biochip 131
 5.4.3 Bioassay-Specific Reservoir Allocation 133
 5.5 Visibility-Aware Droplet Detection 135
 5.6 Experimental Results ... 138
 5.6.1 Probabilistic Control of DNA Amplification 138
 5.6.2 Layout Design for PCR Biochips 140
 5.6.3 Defect Tolerance of Layouts for PCR Biochips 143
 5.7 Conclusion .. 144
References ... 145

6 Pin-Count Minimization for Application-Independent Chips 147
 6.1 Motivation and Related Prior Work 147
 6.2 Analysis of Pin-Assignment ... 149
 6.2.1 Pin-Actuation Conflicts 149
 6.2.2 Control-Pin Sharing and Concurrent Movement of Droplets. 150
 6.3 ILP Model for Pin-Assignment ... 155
6.4 Heuristic Optimization Method .. 156
6.5 Manipulation of Large Droplets .. 166
 6.5.1 Transportation of $2 \times$ Droplets 166
 6.5.2 Influence of Diagonal Electrodes 168
6.6 Scheduling of Fluid-Handling Operations 170
6.7 Simulation Results .. 173
 6.7.1 Commercial Biochips ... 174
 6.7.2 Experimental Biochips ... 177
 6.7.3 Simulation Results on Regular Array 180
6.8 Chapter Summary and Conclusions 182
References .. 182

7 Pin-Limited Cyberphysical Microfluidic Biochip 185
7.1 Introduction .. 185
7.2 Wire Routing for General-Purpose Pin-Limited Biochips 187
7.3 Design Flow for Pin-Limited Cyberphysical Biochips 190
7.4 Simulation Results .. 191
 7.4.1 Results Derived by the Operation-Interdependency-Aware Synthesis Approach 191
 7.4.2 Completion Time with Multiple Clock Frequencies on Pin-Limited Biochip 192
7.5 Chapter Summary and Conclusions 193
References .. 193

8 Conclusions .. 195
Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips
Luo, Y.; Chakrabarty, K.; Ho, T.-Y.
2015, XII, 197 p. 98 illus., 60 illus. in color., Hardcover
ISBN: 978-3-319-09005-4