Contents

1 Deformation of Metals ... 1
 1.1 Relevant Background on Automotive and Aerospace Industries .. 2
 1.2 Present Forming Technologies 4
 1.2.1 Hot Working ... 5
 1.2.2 Incremental Forming 5
 1.2.3 Superplastic Forming 6
 1.2.4 Tailor-Welded Blanking 7
 1.3 Limitations of Current Technologies 8
 1.4 Plastic Deformation of Metals 8
 1.4.1 Bonding .. 9
 1.4.2 Dislocations ... 10
 1.4.3 Crystalline Structures 13
 1.4.4 Lattice Defects ... 14
 1.5 Metrics of Formability .. 17
 1.5.1 Formability in Sheet Metals 17
 1.5.2 Additional Forming Metrics 18
 1.6 Conclusions .. 20
 References .. 20

2 Introduction to Electrically Assisted Forming 23
 2.1 Electrically Assisted Forming 23
 2.2 EAF Literature Review ... 25
 2.2.1 EAF Theory and Modeling 26
 2.2.2 Significant EAF Modeling Variables from Experimentation 28
 2.2.3 Relation to Crystal Structure and Resistivity 32
 2.2.4 Electroplasticity and Electromigration 33
 2.3 Broader Impacts of EAF ... 33
 2.3.1 Automotive and Aerospace Industries 33
 2.3.2 Potential Early Adopters of EAF Modeling 34
 References .. 34
3 The Effect of Electric Current on Metals

3.1 Electrical Current Flow

3.2 Previous Electroplastic Theories
3.2.1 Localized Heating
3.2.2 Electron Wind Effect

3.3 Comprehensive Electroplastic Theory Explanation
3.3.1 Electrical Current Without Metal Deformation
3.3.2 Electrical Current with Metal Deformation
3.3.3 Electrical Current Effects on Formability
3.3.4 Supporting Experimental Results

3.4 Electroplastic Theory Conclusions

References

4 Macroscale Modeling of the Electroplastic Effect

4.1 Mechanical-Based Approach to Determining the EEC
4.1.1 Experimental Setup and Procedure
4.1.2 Mechanical-Based EEC Determination Procedure
4.1.3 Mechanical-Based EEC Conclusions

4.2 Thermal-Based Approach to Determining the EEC
4.2.1 Building a Thermal Model
4.2.2 Experimental Setup and Procedure
4.2.3 EEC Thermal-Based Determination
4.2.4 Thermal-Based EEC Conclusions

4.3 Comparison Between the Different EEC Determination Approaches

4.4 EEC Profile Conclusions

4.5 Empirical Modeling Strategies
4.5.1 Non-constant Current Density
4.5.2 Constant Current Density

4.6 Macroscale Modeling of the Electroplastic Effect Conclusions

References

5 Compressive Electrically Assisted Forming Model

5.1 Analytical Modeling of Compression Forming Processes
5.1.1 Definition of an EAF Modeling Strategy
5.1.2 Analysis of an Electrically Assisted Compression Process

5.1.3 Effective Stress and Strain—Classical Compression Test
5.1.4 Effective Stress and Strain—Electrically Assisted Compression Test

5.1.5 Current Density Relationship During Electrically Assisted Compression

References
5.1.6 Strain and Temperature Effect on Resistance and Current 89
5.1.7 Analytical Model for Electrically Assisted Compression ... 89
5.1.8 Overall Solution Schematic ... 90
5.1.9 EAF Modeling Approach Summary ... 91
5.2 Simplified EAF Forging Model .. 91
5.2.1 EAF Forging Stress–Strain Model ... 91
5.2.2 Modeling Strategy Overview ... 92
5.2.3 Coupled Thermo-Mechanical Modeling .. 92
5.2.4 Assumptions of the Thermo-Mechanical Model .. 94
5.2.5 Experimental Setup and Procedure .. 96
5.2.6 Experimental and Modeling Results ... 97
5.2.7 Electrical Efficiency Analysis ... 100
5.2.8 EAF Forging Model Conclusions .. 101
5.3 Specific Heat Sensitivity ... 102
5.4 Heat Transfer Modes Analysis ... 104
5.5 EEC Profile—Material Sensitivity Comparison ... 107
5.6 EAF Modeling—Sensitivities and Simplifications Conclusions .. 109

References ... 110

6 Tensile Electroforming Model .. 113
6.1 Thermal Modeling .. 113
6.1.1 Model Development .. 114
6.1.2 Experimental Setup .. 123
6.1.3 Results and Discussion .. 124
6.1.4 Thermal Model Conclusions ... 132
6.2 Mechanical Modeling .. 133
6.2.1 Deformation/Strength Model Derivation .. 134
6.2.2 Deformation/Strength Model Solution Method ... 137
6.2.3 Deformation/Strength Model Results .. 140
6.2.4 Mechanical Modeling Conclusions .. 152
6.3 Thermo-Mechanical Model ... 153
6.3.1 Thermo-Mechanical EAF Model Overview and Solution Scheme 153
6.3.2 Thermal Expansion Stress ... 154
6.3.3 Model Results ... 155
6.3.4 Division of Thermal Expansion, Thermal Softening, and Direct Electrical Effects 157
6.3.5 Thermo-Mechanical Modeling Conclusions ... 158
6.4 Tensile Electroforming Model Conclusions .. 159

References ... 159
7 Control of Electrically Assisted Forming

7.1 Constant Force Forming

7.1.1 Benefits of Constant Force Forming

7.2 Constant Stress Forming

7.2.1 Benefits and Opportunities of Constant Stress Forming

7.3 Constant Current Density Forming

7.3.1 Benefits of Constant Current Density Forming

7.4 Model-Based Control Feasibility

7.5 Process Control Conclusions

References

8 Microstructure and Phase Effects on EAF

8.1 Grain Size Effect on EAF

8.1.1 Specimen Preparation and Resulting Grain Sizes

8.1.2 Experimental Grain Size Testing

8.1.3 EAF/Grain Size Conclusions

8.2 Prior Cold Work Effect on EAF

8.2.1 Importance of Percent Cold Work on EAF Effectiveness

8.2.2 Specimen Preparation

8.2.3 Experimental Setup and Procedure

8.2.4 Results and Discussion

8.2.5 EAF/Percent Cold Work Conclusions

8.3 Microstructure Analysis Under Tensile Loading

8.3.1 As-Received Material Microstructure

8.3.2 Summary of Statistical Analysis of Micrographs

8.3.3 Room Temperature Deformation Microstructure

8.3.4 EAF Microstructure

8.3.5 Microstructure Analysis Conclusions

References

9 Tribological and Contact Area Effects

9.1 Contact Area Effect on EAF Effectiveness

9.1.1 Specimen Preparation (Surface Ground)

9.1.2 Specimen Preparation (Enhanced Asperities)

9.1.3 Post-forming EAF Roughness Examination

9.1.4 Experimental Setup and Procedure

9.1.5 Thermal Analysis of EAF Based on Contact Area

9.1.6 Voltage–Resistance Contact Area Model

9.1.7 Mechanical Analysis of EAF Based on Contact Area

9.1.8 EAF/Contact Area Conclusions

References
9.2 Tribological Effect on EAF Effectiveness ... 231
 9.2.1 Effects of Electricity on Tribological Conditions 232
 9.2.2 Experimental Setup and Procedure (Ring Tribo-Tests) 233
 9.2.3 Determining Friction Calibration Curves 235
 9.2.4 Testing Procedures .. 235
 9.2.5 Candidate Metal Forming Lubricants 237
 9.2.6 Experimental Results and Discussion 238
 9.2.7 Lubricant Evaluation (Reduction in Forming Load) 238
 9.2.8 Temperature Measurements .. 241
 9.2.9 EAF/Tribology Conclusions .. 243
References ... 243

10 Design of an Electrically Assisted Manufacturing Process 245
 10.1 Energy Analysis ... 245
 10.1.1 Conventional Cold Forming .. 245
 10.1.2 Thermally Assisted Forming .. 247
 10.1.3 Electrically Assisted Forming ... 249
 10.1.4 Energy Comparison .. 250
 10.2 AC Versus DC Current ... 251
 10.2.1 Energy Analysis ... 251
 10.2.2 Skin Effect ... 251
 10.3 Additional Process Design Considerations 252
 10.3.1 Power Supply ... 252
 10.4 EAF Process Design Conclusions .. 253

11 Applications of Electrically Assisted Manufacturing 255
 11.1 EAF Bending Application and Model .. 255
 11.1.1 Analysis of an EA Bending Process 257
 11.1.2 Assumptions of the EAB Model 257
 11.1.3 Classical Bending Process (Force and Springback) 258
 11.1.4 Analytical Modeling of EAB ... 260
 11.1.5 EAB Solution Schematic .. 263
 11.1.6 Experimental Setup and Procedure 264
 11.1.7 Thermal Measurements in EAB ... 268
 11.1.8 Validation of the Model via Experiments 269
 11.1.9 Effects of Electricity in Bending 270
 11.1.10 EAB Model Conclusions .. 276
 11.2 Electrically Assisted Machining .. 277
 11.2.1 Observations in Low-Strain-Rate EA Machining 277
 11.2.2 High-Strain-Rate Process Modeling and Experimental Testing for EA Machining .. 279
 11.2.3 EA Machining Conclusions .. 283
Contents

11.3 Electrically Assisted Friction Stir Welding 284
11.3.1 Electrically Assisted Friction Stir Welding Background 284
11.3.2 EAFSW Experimental Setup .. 285
11.3.3 Results and Discussion .. 287
11.3.4 Conclusions and Future Work 291
11.4 Experimental Findings for Alternative EAF Processes 291
11.4.1 Compression ... 292
11.4.2 Tension ... 294
11.4.3 Non-uniform Deformation (E.G. Channel Formation) 300
11.4.4 Springback Reduction Using EAF 301
11.4.5 Electrically Assisted Micro-Forming 302
11.5 Overhead Transmission Line Design Using EAF 303
11.5.1 The Electricity Transmission Grid 303
11.5.2 Transmission Line Structures and Setups 303
11.5.3 Commercial Conductors and Sizing 304
11.5.4 Conductor Sag ... 305
11.5.5 Effect of Temperature on Transmission Line Longevity 306
11.5.6 Applying EAF Modeling to OHTL Sag Calculations 307
11.5.7 Future Work to Determine EEC Values for OHTL’s 309
References .. 309

Appendix A ... 313
Appendix B ... 327
Appendix C ... 343
Electrically Assisted Forming
Modeling and Control
Salandro, W.; Jones, J.; Bunget, C.; Mears, L.; Roth, J.
2015, XIX, 355 p. 337 illus., Hardcover
ISBN: 978-3-319-08878-5